Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Appl Toxicol ; 41(3): 362-374, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32830330

RESUMO

1,2-dichloroethane (DCE or EDC) is a chlorinated hydrocarbon used as a chemical intermediate, including in the synthesis of polyvinyl chloride. Although DCE has induced tumors in both rats and mice, the overall weight-of-evidence suggests a lack of in vivo mutagenicity. The present study was conducted to explore a potential mode of action further for tumor formation in rat mammary tissue. Fischer 344 rats were exposed to target concentrations of 0 or 200 ppm of DCE vapors (6 hours/day, 7 days/week) for at least 28 days; 200 ppm represents a concentration of ~20% higher than that reported to induce mammary tumors. Endpoints examined included DNA damage (via Comet assay), glutathione (reduced, oxidized and conjugated), tissue DNA adducts, cell proliferation and serum prolactin levels. Exposure to DCE did not alter serum prolactin levels with consistent estrous stage, did not cause cell proliferation in mammary epithelial cells, nor result in histopathological alterations in the mammary gland. DNA adducts were identified, including the N7 -guanylethyl glutathione adduct, with higher adduct levels measured in liver (nontumorigenic target) compared with mammary tissue isolated from the same rats; no known mutagenic adducts were identified. DCE did not increase the Comet assay response in mammary epithelial cells, whereas DNA damage in the positive control (N-nitroso-N-methylurea) was significantly increased. Although the result of this study did not identify a specific mode of action for DCE-induced mammary tumors in rats, the lack of any exposure-related genotoxic responses further contributes to the weight-of-evidence suggesting that DCE is a nongenotoxic carcinogen.


Assuntos
Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Dicloretos de Etileno/toxicidade , Neoplasias Mamárias Animais/induzido quimicamente , Mutagênicos/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Ratos , Ratos Endogâmicos F344 , Relação Estrutura-Atividade
2.
Regul Toxicol Pharmacol ; 81: 407-420, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693708

RESUMO

Agrochemical formulations have been underrepresented in validation efforts for implementing alternative eye irritation approaches but represent a significant opportunity to reduce animal testing. This study assesses the utility of the neutral red release assay (NRR) and EpiOcular™ assay (EO) for predicting the eye irritation potential of 64 agrochemical formulations relative to Draize data. In the NRR, formulations with an NRR50 value ≤ 50 mg/mL were categorized as UN GHS Cat 1 and those >250 mg/mL were classified as UN GHS Non Classified (NC). The accuracy, sensitivity, and specificity were 78, 85 and 76% and 73, 85 and 61% for identifying UN GHS 1 and NC formulations, respectively. Specificity was poor for formulations with NRR50 > 50 to ≤250 mg/mL. The EO (ET-40 method) was explored to differentiate formulations that were UN GHS 1/2 and UN GHS NC. The EO resulted in accuracy, sensitivity, and specificity of 65%, 58% and 75% for identifying UN GHS NC formulations. To improve the overall performance, the assays were implemented using a tiered-approach where the NRR was run as a first-tier followed by the EO. The tiered-approach resulted in improved accuracy (75%) and balanced sensitivity (73%) and specificity (77%) for distinguishing between irritating and non-irritating agrochemical formulations.


Assuntos
Agroquímicos/toxicidade , Alternativas aos Testes com Animais , Olho/efeitos dos fármacos , Irritantes/toxicidade , Células 3T3 , Agroquímicos/administração & dosagem , Animais , Células Cultivadas , Irritantes/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Vermelho Neutro , Testes de Toxicidade
3.
Regul Toxicol Pharmacol ; 73(1): 137-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26111608

RESUMO

Nanomaterials continue to bring promising advances to science and technology. In concert have come calls for increased regulatory oversight to ensure their appropriate identification and evaluation, which has led to extensive discussions about nanomaterial definitions. Numerous nanomaterial definitions have been proposed by government, industry, and standards organizations. We conducted a comprehensive comparative assessment of existing nanomaterial definitions put forward by governments to highlight their similarities and differences. We found that the size limits used in different definitions were inconsistent, as were considerations of other elements, including agglomerates and aggregates, distributional thresholds, novel properties, and solubility. Other important differences included consideration of number size distributions versus weight distributions and natural versus intentionally-manufactured materials. Overall, the definitions we compared were not in alignment, which may lead to inconsistent identification and evaluation of nanomaterials and could have adverse impacts on commerce and public perceptions of nanotechnology. We recommend a set of considerations that future discussions of nanomaterial definitions should consider for describing materials and assessing their potential for health and environmental impacts using risk-based approaches within existing assessment frameworks. Our intent is to initiate a dialogue aimed at achieving greater clarity in identifying those nanomaterials that may require additional evaluation, not to propose a formal definition.


Assuntos
Nanoestruturas/efeitos adversos , Nanoestruturas/química , Saúde Ambiental/métodos , Humanos , Manufaturas/efeitos adversos , Nanotecnologia/métodos , Tamanho da Partícula , Medição de Risco , Segurança
4.
Regul Toxicol Pharmacol ; 72(2): 350-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981449

RESUMO

Assessment of skin sensitization potential is an important component of the safety evaluation process for agrochemical products. Recently, non-animal approaches including the KeratinoSens™ assay have been developed for predicting skin sensitization potential. Assessing the utility of the KeratinoSens™ assay for use with multi-component mixtures such as agrochemical formulations has not been previously evaluated and is a significant need. This study was undertaken to evaluate the KeratinoSens™ assay prediction potential for agrochemical formulations. The assay was conducted for 8 agrochemical active ingredients (AIs) including 3 sensitizers (acetochlor, meptyldinocap, triclopyr), 5 non-sensitizers (aminopyralid, clopyralid, florasulam, methoxyfenozide, oxyfluorfen) and 10 formulations for which in vivo sensitization data were available. The KeratinoSens™ correctly predicted the sensitization potential of all the AIs. For agrochemical formulations it was necessary to modify the standard assay procedure whereby the formulation was assumed to have a common molecular weight. The resultant approach correctly predicted the sensitization potential for 3 of 4 sensitizing formulations and all 6 non-sensitizing formulations when compared to in vivo data. Only the meptyldinocap-containing formulation was misclassified, as a result of high cytotoxicity. These results demonstrate the promising utility of the KeratinoSens™ assay for evaluating the skin sensitization potential of agrochemical AIs and formulations.


Assuntos
Agroquímicos/toxicidade , Bioensaio , Haptenos/toxicidade , Alternativas aos Testes com Animais , Linhagem Celular , Dermatite Alérgica de Contato , Humanos
5.
J Am Assoc Lab Anim Sci ; 54(2): 214-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25836969

RESUMO

Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process.


Assuntos
Alternativas aos Testes com Animais , Indústria Química , Testes de Toxicidade , Experimentação Animal , Animais , Simulação por Computador , Ensaios de Triagem em Larga Escala , Medição de Risco , Testes de Toxicidade/economia , Testes de Toxicidade/tendências
6.
Environ Mol Mutagen ; 56(3): 277-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25482136

RESUMO

Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided.


Assuntos
Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Animais , District of Columbia , Epigênese Genética/efeitos dos fármacos , Genômica/métodos , Humanos , Medição de Risco
7.
Environ Mol Mutagen ; 55(7): 530-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24976023

RESUMO

Integrated testing strategies involve the assessment of multiple endpoints within a single toxicity study and represent an important approach for reducing animal use and streamlining testing. The present study evaluated the ability to combine general, immune, and genetic toxicity endpoints into a single study. Specifically, this study evaluated the impact of sheep red blood cell (SRBC) immunization, as part of the T-cell dependent antibody response (TDAR) assay, on organ weights, micronuclei (MN) formation (bone marrow and peripheral blood), and the Comet assay response in the liver of female F344/DuCrl rats treated with cyclophosphamide (CP) a known immunosuppressive chemical and genotoxicant. For the TDAR assay, treatment with CP resulted in a dose-dependent decrease in the antibody response with a suppression of greater than 95% at the high dose. Injection with SRBC had no impact on evaluated organ weights, histopathology, hematology, and clinical chemistry parameters. Analysis of MN formation in bone marrow and peripheral blood revealed a dose-dependent increase in response to CP treatment. Injection with SRBC had no impact on the level of MN in control animals and did not alter the dose response of CP. There was a slight increase in liver DNA damage in response to CP as measured by the Comet assay; however, injection with SRBCs did not alter this endpoint. Overall these data provide strong support for the concurrent assessment of general, immune, and genetic toxicology endpoints within a single study as part of an integrated testing strategy approach.


Assuntos
Ensaio Cometa , Testes para Micronúcleos , Mutagênicos/química , Testes de Toxicidade/métodos , Animais , Formação de Anticorpos/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Ciclofosfamida/química , Dano ao DNA , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Feminino , Fígado/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Projetos de Pesquisa , Ovinos , Linfócitos T/efeitos dos fármacos
8.
Part Fibre Toxicol ; 11: 17, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24708765

RESUMO

Advances in adding nanomaterials to various matrices have occurred in tandem with the identification of potential hazards associated with exposure to pure forms of nanomaterials. We searched multiple research publication databases and found that, relative to data generated on potential nanomaterial hazards or exposures, very little attention has focused on understanding the potential and conditions for release of nanomaterials from nanocomposites. However, as a prerequisite to exposure studying release is necessary to inform risk assessments. We identified fifty-four studies that specifically investigated the release of nanomaterials, and review them in the following release scenario groupings: machining, weathering, washing, contact and incineration. While all of the identified studies provided useful information, only half were controlled experiments. Based on these data, the debris released from solid, non-food nanocomposites contains in varying frequencies, a mixture of four types of debris. Most frequently identified are (1) particles of matrix alone, and slightly less often, the (2) matrix particles exhibit the nanomaterial partially or fully embedded; far less frequently is (3) the added nanomaterial entirely dissociated from the matrix identified: and most rare are (4) dissolved ionic forms of the added nanomaterial. The occurrence of specific debris types appeared to be dependent on the specific release scenario and environment. These data highlight that release from nanocomposites can take multiple forms and that additional research and guidance would be beneficial, allowing for more consistent characterization of the release potential of nanomaterials. In addition, these data support calls for method validation and standardization, as well as understanding how laboratory release scenarios relate to real-world conditions. Importantly, as risk is considered to be a function of the inherent hazards of a substance and the actual potential for exposure, data on nanomaterial release dynamics and debris composition from commercially relevant nanocomposites are a valuable starting point for consideration in fate and transport modeling, exposure assessment, and risk assessment frameworks for nanomaterials.


Assuntos
Nanocompostos/química , Nanoestruturas/química , Animais , Materiais Dentários , Humanos , Incineração , Nanocompostos/efeitos da radiação , Nanocompostos/toxicidade , Nanoestruturas/efeitos da radiação , Nanoestruturas/toxicidade , Nanotecnologia , Medição de Risco , Suor/química , Raios Ultravioleta
9.
Crit Rev Toxicol ; 44(5): 407-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24601769

RESUMO

Conduct of a T-cell-dependent antibody response (TDAR) assay in rodents according to Environmental Protection Agency (EPA) Test Guideline OPPTS 870.7800 is now required for chemical pesticide active ingredients registered in the United States. To assess potential regulatory impact, a retrospective analysis was developed using TDAR tests conducted on 78 pesticide chemicals from 46 separate chemical classes. The objective of the retrospective analysis was to examine the frequency of positive responses and determine the potential for the TDAR to yield lower endpoints than those utilized to calculate reference doses (RfDs). A reduction in the TDAR response was observed at only the high-dose level in five studies, while it was unaltered in the remaining studies. Importantly, for all 78 pesticide chemicals, the TDAR no-observed-adverse-effect levels (TDAR NOAELs) were greater than the NOAELS currently in use as risk assessment endpoints. The TDAR NOAELs were higher than the current EPA-selected endpoints for the chronic RfD, short-term, intermediate and long-term exposure scenarios by 3-27,000, 3-1,688, 3-1,688 and 4.9-1,688 times, respectively. Based on this analysis, conduct of the TDAR assay had minimal impact on hazard identification and did not impact human health risk assessments for the pesticides included in this evaluation. These data strongly support employment of alternative approaches including initial weight-of-evidence analysis for immunotoxic potential prior to conducting functional immunotoxicity testing for pesticide active ingredients.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Praguicidas/toxicidade , Linfócitos T/efeitos dos fármacos , Testes de Toxicidade/normas , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Nível de Efeito Adverso não Observado , Ratos , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
10.
Toxicology ; 318: 32-9, 2014 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-24534103

RESUMO

Allergic sensitisation of the respiratory tract by chemicals is associated with rhinitis and asthma and remains an important occupational health issue. Although less than 80 chemicals have been confirmed as respiratory allergens the adverse health effects can be serious, and in rare instances can be fatal, and there are, in addition, related socioeconomic issues. The challenges that chemical respiratory allergy pose for toxicologists are substantial. No validated methods are available for hazard identification and characterisation, and this is due in large part to the fact that there remains considerable uncertainty and debate about the mechanisms through which sensitisation of the respiratory tract is acquired. Despite that uncertainty, there is a need to establish some common understanding of the key events and processes that are involved in respiratory sensitisation to chemicals and that might in turn provide the foundations for novel approaches to safety assessment. In recent years the concept of adverse outcome pathways (AOP) has gained some considerable interest among the toxicology community as a basis for outlining the key steps leading to an adverse health outcome, while also providing a framework for focusing future research, and for developing alternative paradigms for hazard characterisation. Here we explore application of the same general principles to an examination of the induction by chemicals of respiratory sensitisation. In this instance, however, we have chosen to adopt a reverse engineering approach and to model a possible AOP for chemical respiratory allergy working backwards from the elicitation of adverse health effects to the cellular and molecular mechanisms that are implicated in the acquisition of sensitisation.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Asma Ocupacional/induzido quimicamente , Asma Ocupacional/imunologia , Substâncias Perigosas/toxicidade , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/imunologia , Humanos , Rinite/induzido quimicamente , Rinite/imunologia , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA