Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666346

RESUMO

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background. Outcrossing TM5992 with barley variety Proctor and subsequent SNP array-based bulk segregant analysis, fine mapped the mutation to a cM scale. Exome sequencing pinpointed a mutation in the candidate gene HvPIN1a, further confirming this by analysing independent mutant alleles. Detailed analysis of root growth and anatomy in Hvpin1a mutant alleles exhibited a slower growth rate, shorter apical meristem and striking vascular patterning defects compared to WT. Expression and mutant analyses of PIN1 members in the closely related cereal brachypodium (Brachypodium distachyon) revealed that BdPIN1a and BdPIN1b were redundantly expressed in root vascular tissues but only Bdpin1a mutant allele displayed root vascular defects similar to Hvpin1a. We conclude that barley PIN1 genes have sub-functionalised in cereals, compared to Arabidopsis (Arabidopsis thaliana), where PIN1a sequences control root vascular patterning.

2.
Rice (N Y) ; 16(1): 2, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36633713

RESUMO

BACKGROUND: Rice is one of the most salt sensitive crops at seedling, early vegetative and reproductive stages. Varieties with salinity tolerance at seedling stage promote an efficient growth at early stages in salt affected soils, leading to healthy vegetative growth that protects crop yield. Saltol major QTL confers capacity to young rice plants growing under salt condition by maintaining a low Na+/K+ molar ratio in the shoots. RESULTS: Marker-assisted backcross (MABC) procedure was adopted to transfer Saltol locus conferring salt tolerance at seedling stage from donor indica IR64-Saltol to two temperate japonica varieties, Vialone Nano and Onice. Forward and background selections were accomplished using polymorphic KASP markers and a final evaluation of genetic background recovery of the selected lines was conducted using 15,580 SNP markers obtained from Genotyping by Sequencing. Three MABC generations followed by two selfing, allowed the identification of introgression lines achieving a recovery of the recurrent parent (RP) genome up to 100% (based on KASP markers) or 98.97% (based on GBS). Lines with highest RP genome recovery (RPGR) were evaluated for agronomical-phenological traits in field under non-salinized conditions. VN1, VN4, O1 lines were selected considering the agronomic evaluations and the RPGR% results as the most interesting for commercial exploitation. A physiological characterization was conducted by evaluating salt tolerance under hydroponic conditions. The selected lines showed lower standard evaluation system (SES) scores: 62% of VN4, and 57% of O1 plants reaching SES 3 or SES 5 respectively, while only 40% of Vialone Nano and 25% of Onice plants recorded scores from 3 to 5, respectively. VN1, VN4 and O1 showed a reduced electrolyte leakage values, and limited negative effects on relative water content and shoot/root fresh weight ratio. CONCLUSION: The Saltol locus was successfully transferred to two elite varieties by MABC in a time frame of three years. The application of background selection until BC3F3 allowed the selection of lines with a RPGR up to 98.97%. Physiological evaluations for the selected lines indicate an improved salinity tolerance at seedling stage. The results supported the effectiveness of the Saltol locus in temperate japonica and of the MABC procedure for recovering of the RP favorable traits.

3.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881796

RESUMO

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Assuntos
Produtos Agrícolas , Gravitropismo , Hordeum , Proteínas de Plantas , Raízes de Plantas , Parede Celular/química , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Gravitropismo/genética , Hordeum/química , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Microscopia de Força Atômica , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446550

RESUMO

The root growth angle defines how roots grow toward the gravity vector and is among the most important determinants of root system architecture. It controls water uptake capacity, nutrient use efficiency, stress resilience, and, as a consequence, yield of crop plants. We demonstrated that the egt2 (enhanced gravitropism 2) mutant of barley exhibits steeper root growth of seminal and lateral roots and an auxin-independent higher responsiveness to gravity compared to wild-type plants. We cloned the EGT2 gene by a combination of bulked-segregant analysis and whole genome sequencing. Subsequent validation experiments by an independent CRISPR/Cas9 mutant allele demonstrated that egt2 encodes a STERILE ALPHA MOTIF domain-containing protein. In situ hybridization experiments illustrated that EGT2 is expressed from the root cap to the elongation zone. We demonstrated the evolutionary conserved role of EGT2 in root growth angle control between barley and wheat by knocking out the EGT2 orthologs in the A and B genomes of tetraploid durum wheat. By combining laser capture microdissection with RNA sequencing, we observed that seven expansin genes were transcriptionally down-regulated in the elongation zone. This is consistent with a role of EGT2 in this region of the root where the effect of gravity sensing is executed by differential cell elongation. Our findings suggest that EGT2 is an evolutionary conserved regulator of root growth angle in barley and wheat that could be a valuable target for root-based crop improvement strategies in cereals.


Assuntos
Gravitropismo , Hordeum/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Motivo Estéril alfa , Triticum/fisiologia , Parede Celular/metabolismo , Sequência Conservada , Evolução Molecular , Técnicas de Inativação de Genes , Genes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento
5.
Plant Sci ; 233: 127-133, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711820

RESUMO

The amylose/amylopectin ratio has a major influence over the properties of starch and determines its optimal end use. Here, high amylose durum wheat has been bred by combining knock down alleles at the two homoelogous genes encoding starch branching enzyme IIa (SBEIIa-A and SBEIIa-B). The complete silencing of these genes had a number of pleiotropic effects on starch synthesis: it affected the transcriptional activity of SBEIIb, ISA1 (starch debranching enzyme) and all of the genes encoding starch synthases (SSI, SSIIa, SSIII and GBSSI). The starch produced by grain of the double SBEIIa mutants was high in amylose (up to ∼1.95 fold that of the wild type) and contained up to about eight fold more resistant starch. A single nucleotide polymorphism adjacent to the splice site at the end of exon 10 of the G364E mutant copies of both SBEIIa-A and SBEIIa-B resulted in the loss of a conserved exonic splicing silencer element. Its starch was similar to that of the SBEIIa double mutant. G364E SBEIIa pre-mRNA was incorrectly processed, resulting in the formation of alternative, but non-functional splicing products.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Processamento Alternativo , Amilose/metabolismo , Inativação Gênica , Mutação de Sentido Incorreto , Fenótipo , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triticum/metabolismo
6.
PLoS One ; 9(10): e107779, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25271438

RESUMO

Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.


Assuntos
Genômica , Hordeum/genética , Hordeum/metabolismo , Fenótipo , Amido/metabolismo , Amilose/metabolismo , Genômica/métodos , Mutação , Proteínas de Plantas , Sementes/anatomia & histologia , Sementes/genética , Sintase do Amido
7.
Plant Biotechnol J ; 6(5): 477-85, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18422888

RESUMO

A sodium azide-mutagenized population of barley (cv. 'Morex') was developed and utilized to identify mutants at target genes using the 'targeting induced local lesions in genomes' (TILLING) procedure. Screening for mutations at four agronomically important genes (HvCO1, Rpg1, eIF4E and NR) identified a total of 22 new mutant alleles, equivalent to the extrapolated rate of one mutation every 374 kb. All mutations except one were G/C to A/T transitions and several (approximately 68%) implied a change in protein amino acid sequence and therefore a possible effect on phenotype. The high rate of mutation detected through TILLING is in keeping with the high frequency (32.7%) of variant phenotypes observed amongst the M(3) families. Our results indicate the feasibility of using this resource for both reverse and forward genetics approaches to investigate gene function in barley and related crops.


Assuntos
Hordeum/efeitos dos fármacos , Hordeum/genética , Mutagênese/efeitos dos fármacos , Mutação/genética , Azida Sódica/farmacologia , DNA de Plantas/análise , DNA de Plantas/genética , Marcação de Genes , Genes de Plantas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA