RESUMO
The B cell response in the germinal centre (GC) reaction requires a unique bioenergetic supply. Although mitochondria are remodelled upon antigen-mediated B cell receptor stimulation, mitochondrial function in B cells is still poorly understood. To gain a better understanding of the role of mitochondria in B cell function, here we generate mice with B cell-specific deficiency in Tfam, a transcription factor necessary for mitochondrial biogenesis. Tfam conditional knock-out (KO) mice display a blockage of the GC reaction and a bias of B cell differentiation towards memory B cells and aged-related B cells, hallmarks of an aged immune response. Unexpectedly, blocked GC reaction in Tfam KO mice is not caused by defects in the bioenergetic supply but is associated with a defect in the remodelling of the lysosomal compartment in B cells. Our results may thus describe a mitochondrial function for lysosome regulation and the downstream antigen presentation in B cells during the GC reaction, the dysruption of which is manifested as an aged immune response.
Assuntos
Linfócitos B , Mitocôndrias , Camundongos , Animais , Mitocôndrias/genética , Centro Germinativo , Camundongos Knockout , Ativação LinfocitáriaRESUMO
In August 2022, Italy launched a vaccination campaign to combat the spread of the monkeypox virus, which the WHO has designated as a public health emergency. Priority targets for the campaign included laboratory personnel and men who have sex with men with specific risk criteria. Primary immunization involved two doses of the Imvanex/Jynneos vaccine, followed by a single booster dose. We conducted a study in two Italian towns, Bologna and Forlì, in October and November 2022 to investigate adverse events following immunization (AEFIs) of the monkeypox vaccine through participant-based active surveillance. Participants who received the vaccine and were aged 18 and over were invited to complete an e-questionnaire by scanning a QR code during their second vaccine appointment or by email one month after the booster dose. A descriptive analysis of AEFI incidences was conducted, with the results stratified by type and severity of symptoms. A total of 135 first-dose, 50 second-dose, and 6 single-dose recipients were included, with a mean age of 36.4 ± 8.7 years. Systemic reactions after the first and second doses were reported by 39.3% and 26.0% of participants, respectively, with asthenia being the most common symptom. Local site reactions were reported by 97.0% and 100.0% of participants, respectively, with redness, swelling, and itching being the most common local AEFIs. Grade 3 or 4 AEFIs were reported for local AEFIs only by 16.8% and 14.0% of participants after the first and second doses, respectively. Our findings suggest that the monkeypox vaccine has a high tolerability profile in terms of short-term common systemic AEFIs. However, the high incidence and severity of local AEFIs highlight the need to monitor their persistence following intradermal administration of the vaccine.
RESUMO
Successful vaccines rely on activating a functional humoral immune response through the generation of class-switched high affinity immunoglobulins (Igs). The germinal center (GC) reaction is crucial for this process, in which B cells are selected in their search for antigen and T cell help. A major hurdle to understand the mechanisms of B cell:T cell cooperation has been the lack of an antigen-specific in vitro GC system. Here we report the generation of antigen-specific, high-affinity, class-switched Igs in simple 2-cell type cultures of naive B and T cells. B cell antigen uptake by phagocytosis is key to generate these Igs. We have used the method to interrogate if T cells confer directional help to cognate B cells that present antigen and to bystander B cells. We find that bystander B cells do not generate class-switched antibodies due to a defective formation of T-B conjugates and an early conversion into memory B cells.
Assuntos
Linfócitos B , Centro Germinativo , Antígenos/metabolismo , Imunidade Humoral , RecreaçãoRESUMO
Signaling via the T cell receptor (TCR) is critical during the development, maintenance, and activation of T cells. Quantitative aspects of TCR signaling have an important role during positive and negative selection, lineage choice, and ability to respond to small amounts of antigen. By using a mutant mouse line expressing a hypomorphic allele of the CD3ζ chain, we show here that the strength of pre-TCRmediated signaling during T cell development determines the diversity of the TCRß repertoire available for positive and negative selection, and hence of the final αßTCR repertoire. This finding uncovers an unexpected, pre-TCR signalingdependent and repertoireshaping role for ß-selection beyond selection of in-frame rearranged TCRß chains. Our data furthermore support a model of pre-TCR signaling in which the arrangement of this receptor in stable nanoclusters determines its quantitative signaling capacity.
Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Animais , Complexo CD3/genética , Diferenciação Celular , Camundongos , Camundongos Mutantes , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transdução de Sinais , Linfócitos T/imunologiaRESUMO
T cells form immunological synapses with professional antigen-presenting cells (APCs) resulting in T cell activation and the acquisition of peptide antigen-MHC (pMHC) complexes from the plasma membrane of the APC. They thus become APCs themselves. We investigate the functional outcome of T-T cell antigen presentation by CD4 T cells and find that the antigen-presenting T cells (Tpres) predominantly differentiate into regulatory T cells (Treg), whereas T cells that have been stimulated by Tpres cells predominantly differentiate into Th17 pro-inflammatory cells. Using mice deficient in pMHC uptake by T cells, we show that T-T antigen presentation is important for the development of experimental autoimmune encephalitis and Th17 cell differentiation in vivo. By varying the professional APC:T cell ratio, we can modulate Treg versus Th17 differentiation in vitro and in vivo, suggesting that T-T antigen presentation underlies proinflammatory responses in conditions of antigen scarcity.
Assuntos
Apresentação de Antígeno/imunologia , Antígenos/metabolismo , Polaridade Celular/imunologia , Células Th17/imunologia , Animais , Antígenos CD28/metabolismo , Diferenciação Celular/imunologia , Membrana Celular/metabolismo , Células Dendríticas/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica , Genoma , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Transcrição Gênica , Trogocitose , Proteínas rho de Ligação ao GTP/deficiência , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.
Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Ceramidas/imunologia , Memória Imunológica , Receptores CCR5/deficiência , Animais , Antígenos/genética , Linfócitos T CD4-Positivos/citologia , Ceramidas/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Receptores CCR5/imunologiaRESUMO
Seasonal influenza is recognized to be a significant public health problem and a cause of death, especially in fragile persons. In nursing homes (NHs), vaccination for both residents and staff is the best preventive strategy. However, professionals' immunization rates are far from reaching the international recommended values. This study aims to describe the adherence and attitudes of NH staff towards flu vaccination and to explore staff hesitancy. A questionnaire was developed based on a literature review and on the 3Cs (confidence, complacency, convenience) of the WHO framework and administered among the staff of four NHs of a province in the northeast of Italy. Results demonstrated a low adherence towards annual vaccination (i.e., only 3% declared getting the flu vaccination each year). Complacency, confidence and convenience all showed a significant impact on the attitude towards vaccination both in univariate and multivariable analysis, with complacency being the most strongly associated area. The area of confidence resulted in strongly challenging factors. Only 24.8% of interviewees appeared trustful towards the efficacy of receiving immunization and 34% declared safety issues. Insights from the study can support the implementation of effective interventions to improve vaccination adherence in NHs. Specifically, increasing complacency by raising awareness related to the risks of influenza appears to be an essential strategy to effectively promote vaccination uptake.
Assuntos
Vacinas contra Influenza , Influenza Humana , Casas de Saúde , Recursos Humanos de Enfermagem , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Influenza Humana/prevenção & controle , Itália , Casas de Saúde/estatística & dados numéricos , Recursos Humanos de Enfermagem/estatística & dados numéricos , VacinaçãoRESUMO
Signal strength controls the outcome of αß T cell selection in the thymus, resulting in death if the affinity of the rearranged TCR is below the threshold for positive selection, or if the affinity of the TCR is above the threshold for negative selection. Here we show that deletion of the GTPase RRAS2 results in exacerbated negative selection and above-normal expression of positive selection markers. Furthermore, Rras2-/- mice are resistant to autoimmunity both in a model of inflammatory bowel disease (IBD) and in a model of myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We show that MOG-specific T cells in Rras2-/- mice have reduced affinity for MOG/I-Ab tetramers, suggesting that enhanced negative selection leads to selection of TCRs with lower affinity for the self-MOG peptide. An analysis of the TCR repertoire shows alterations that mostly affect the TCRα variable (TRAV) locus with specific VJ combinations and CDR3α sequences that are absent in Rras2-/- mice, suggesting their involvement in autoimmunity.
Assuntos
Seleção Clonal Mediada por Antígeno , Encefalomielite Autoimune Experimental/imunologia , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T/imunologia , Proteínas de Membrana/imunologia , Proteínas Monoméricas de Ligação ao GTP/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/genética , Glicoproteína Mielina-Oligodendrócito/efeitos adversos , Glicoproteína Mielina-Oligodendrócito/farmacologiaRESUMO
Successful vaccines rely on activating a functional humoral response that results from promoting a proper germinal center (GC) reaction. Key in this process is the activation of follicular B cells that need to acquire antigens and to present them to cognate CD4 T cells. Here, we report that follicular B cells can phagocytose large antigen-coated particles, a process thought to be exclusive of specialized antigen-presenting cells such as macrophages and dendritic cells. We show that antigen phagocytosis by B cells is BCR-driven and mechanistically dependent on the GTPase RhoG. Using Rhog-/- mice, we show that phagocytosis of antigen by B cells is important for the development of a strong GC response and the generation of high-affinity class-switched antibodies. Importantly, we show that the potentiation effect of alum, a common vaccine adjuvant, requires direct phagocytosis of alum-antigen complexes by B cells. These data suggest a new avenue for vaccination approaches by aiming to deliver 1-3 µm size antigen particles to follicular B cells.
Assuntos
Antígenos/imunologia , Linfócitos B/imunologia , Imunidade Humoral , Fagocitose/imunologia , Actinas/metabolismo , Adjuvantes Imunológicos , Compostos de Alúmen/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , GTP Fosfo-Hidrolases/genética , Centro Germinativo/citologia , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Microesferas , Fagocitose/genética , Vacinação/métodos , Proteínas rho de Ligação ao GTPRESUMO
Upon antigen recognition within peripheral lymphoid organs, B cells interact with T cells and other immune cells to transiently form morphological structures called germinal centers (GCs), which are required for B cell clonal expansion, immunoglobulin class switching, and affinity maturation. This process, known as the GC response, is an energetically demanding process that requires the metabolic reprogramming of B cells. We showed that the Ras-related guanosine triphosphate hydrolase (GTPase) R-Ras2 (also known as TC21) plays an essential, nonredundant, and B cell-intrinsic role in the GC response. Both the conversion of B cells into GC B cells and their expansion were impaired in mice lacking R-Ras2, but not in those lacking a highly related R-Ras subfamily member or both the classic H-Ras and N-Ras GTPases. In the absence of R-Ras2, activated B cells did not exhibit increased oxidative phosphorylation or aerobic glycolysis. We showed that R-Ras2 was an effector of both the B cell receptor (BCR) and CD40 and that, in its absence, B cells exhibited impaired activation of the PI3K-Akt-mTORC1 pathway, reduced mitochondrial DNA replication, and decreased expression of genes involved in glucose metabolism. Because most human B cell lymphomas originate from GC B cells or B cells that have undergone the GC response, our data suggest that R-Ras2 may also regulate metabolism in B cell malignancies.
Assuntos
Linfócitos B/fisiologia , Metabolismo Energético , Genes ras , Centro Germinativo/fisiologia , Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linfócitos B/citologia , Antígenos CD40/genética , Antígenos CD40/metabolismo , Células Cultivadas , Feminino , Centro Germinativo/citologia , Glicólise , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismoRESUMO
Although FoxP3(+) regulatory T cells are key players in the maintenance of immune tolerance and autoimmunity, the lack of specific markers constitute an obstacle to their use for immunotherapy protocols. In this study, we have investigated the role of the C-type lectin receptor CD69 in the suppressor function of Tregs and maintenance of immune tolerance towards harmless inhaled antigens. We identified a novel FoxP3(+)CD69(+) Treg subset capable to maintain immune tolerance and protect to developing inflammation. Although CD69(+) and CD69(-)FoxP3(+) Tregs exist in homeostasis, only CD69-expressing Tregs express high levels of CTLA-4, ICOS, CD38 and GITR suppression-associated markers, secrete high amounts of TGFß and have potent suppressor activity. This activity is regulated by STAT5 and ERK signaling pathways and is impaired by antibody-mediated down-regulation of CD69 expression. Moreover, immunotherapy with FoxP3(+)CD69(+) Tregs restores the homeostasis in Cd69(-/-) mice, that fail to induce tolerance, and is also highly proficient in the prevention of inflammation. The identification of the FoxP3(+)CD69(+) Treg subset paves the way toward the development of new therapeutic strategies to control immune homeostasis and autoimmunity.