RESUMO
In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.
RESUMO
The switching behavior of the novel hybrid material (FA)Na[Fe(CN)5(NO)].H2O (1) in response to temperature (T), light irradiation and electric field (E) is studied using in situ X-ray diffraction (XRD). Crystals of 1 display piezoelectricity, pyroelectricity, second and third harmonic generation. XRD shows that the FA+ are disordered at room-temperature, but stepwise cooling from 273-100â K induces gradual ordering, while cooling under an applied field (E=+40â kVcm-1) induces a sudden phase change at 140â K. Structural-dynamics calculations suggest the field pushes the system into a region of the structural potential-energy surface that is otherwise inaccessible, demonstrating that application of T and E offers an effective route to manipulating the crystal chemistry of these materials. Photocrystallography also reveals photoinduced linkage isomerism, which coexists with but is not correlated to other switching behaviors. These experiments highlight a new approach to in situ studies of hybrid materials, providing insight into the structure-property relationships that underpin their functionality.
RESUMO
Humans can perceive our complex world through multi-sensory fusion. Under limited visual conditions, people can sense a variety of tactile signals to identify objects accurately and rapidly. However, replicating this unique capability in robots remains a significant challenge. Here, we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure, temperature, material recognition and 3D location capabilities, which is combined with multimodal supervised learning algorithms for object recognition. The sensor exhibits human-like pressure (0.04-100 kPa) and temperature (21.5-66.2 °C) detection, millisecond response times (11 ms), a pressure sensitivity of 92.22 kPa-1 and triboelectric durability of over 6000 cycles. The devised algorithm has universality and can accommodate a range of application scenarios. The tactile system can identify common foods in a kitchen scene with 94.63% accuracy and explore the topographic and geomorphic features of a Mars scene with 100% accuracy. This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing, recognition and intelligence.
RESUMO
Currently, the intrinsic instability of organic-inorganic hybrid perovskite nanocrystals (PNCs) at high temperature and high humidity still stands as a big barrier to hinder their potential applications in optoelectronic devices. Herein, we report the controllable in-situ-grown PNCs in polyvinylidene fluoride (PVDF) polymer with profoundly enhanced hygrothermal stability. It is found that the introduced tetradecylphosphonic acid (TDPA) ligand enables significantly improved binding to the surface of PNCs via a strong covalently coordinated P-O-Pb bond, as evidenced by density functional theory calculations and X-ray photoelectron spectroscopy analyses. Accordingly, such enhanced binding could not only make efficient passivation of the surface defects of PNCs but also enable the remarkably suppressed desorption of the ligand from the PNCs under high-temperature environments. Consequently, the photoluminescence quantum yield (PL QY) of the as-fabricated MAPbBr3-PNCs@PVDF film exhibits almost no decay after exposure to air at 333 K over 1800 h. Once the temperatures are increased from 293 to 353 K, their PL intensity can be kept as 88.6% of the initial value, much higher than that without the TDPA ligand (i.e., 42.4%). Moreover, their PL QY can be maintained above 50% over 1560 h (65 days) under harsh working conditions of 333 K and 90% humidity. As a proof of concept, the as-assembled white light-emitting diodes display a large color gamut of 125% National Television System Committee standard, suggesting their promising applications in backlight devices.
RESUMO
A blue light mediated photochemical process using solid graphitic carbon nitride (g-C3N4) in ambient air/isopropanol vapour is suggested to be linked to "nanophase" water inclusions and is shown to produce approx. 50 µmol H2O2 per gram of g-C3N4, which can be stored in the solid g-C3N4 for later release for applications, for example, in disinfection or anti-bacterial surfaces.
RESUMO
Stretchable strain sensors are highly desirable for human motion monitoring, and can be used to build new forms of bionic robots. However, the current use of flexible strain gauges is hindered by the need for an external power supply, and the demand for long-term operation. Here, a new flexible self-powered strain sensor system based on an electromagnetic generator that possesses a high stretchability in excess of 150%, a short response time of 30 ms, and an excellent linearity (R2 > 0.98), is presented. Based on this new form of sensor, a human-machine interaction system is designed to achieve remote control of a robot hand and vehicle using a human hand, which provides a new scheme for real-time gesture interaction.
Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Movimento (Física) , Mãos , Fontes de Energia ElétricaRESUMO
Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light, mechanical and thermal energy and achieve a stable direct current output. Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage, while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics. Here, we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO3 ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies. This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3% energy enhancement to achieve a multi-dimensional "1 + 1 > 2" coupling enhancement in terms of current, charge and energy. This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.
RESUMO
The demand for self-healing elastomers is increasing due to the potential opportunities such materials offer in reducing down-time and cost through extended product lifetimes and reduction of waste. However, further understanding of self-healing mechanisms and processes is required in order to develop a wider range of commercially applicable materials with self-healing properties. Epoxidized natural rubber (ENR) is a derivative of polyisoprene. ENR25 and ENR50 are commercially available materials with 25 and 50 mol % epoxidation, respectively. Recently, reports of the use of ENR in self-healing materials have begun to emerge. However, to date, there has been limited analysis of the self-healing mechanism at the molecular level. The aim of this work is to gain understanding of the relevant self-healing mechanisms through systematic characterization and analysis of the effect of cross-linking on the self-healing performance of ENR and natural rubber (NR). In our study, cross-linking of ENR and NR with dicumyl peroxide and sulfur to provide realistic models of commercial rubber formulations is described, and a cross-linking density of 5 × 10-5 mol cm-3 in sulfur-cured ENR is demonstrated to achieve a healing efficiency of 143% for the tensile strength. This work provides the foundation for further modification of ENR, with the goal of understanding and controlling ENR's self-healing ability for future applications.
RESUMO
To date, a number of studies have reported the use of vibrations coupled to ferroelectric materials for water splitting. However, producing a stable particle suspension for high efficiency and long-term stability remains a challenge. Here, the first report of the production of a nanofluidic BaTiO3 suspension containing a mixture of cubic and tetragonal phases that splits water under ultrasound is provided. The BaTiO3 particle size reduces from approximately 400 nm to approximately 150 nm during the application of ultrasound and the fine-scale nature of the particulates leads to the formation of a stable nanofluid consisting of BaTiO3 particles suspended as a nanofluid. Long-term testing demonstrates repeatable H2 evolution over 4 days with a continuous 24 h period of stable catalysis. A maximum rate of H2 evolution is found to be 270 mmol h-1 g-1 for a loading of 5 mg l-1 of BaTiO3 in 10% MeOH/H2 O. This work indicates the potential of harnessing vibrations for water splitting in functional materials and is the first demonstration of exploiting a ferroelectric nanofluid for stable water splitting, which leads to the highest efficiency of piezoelectrically driven water splitting reported to date.
RESUMO
As one important subclass of piezoelectric materials, pyroelectric materials have caused increasing attention owing to the unique pyroelectric effect induced by spontaneous polarization, showing broad promising application prospects due to various electrical responses induced by time-dependent temperature variation. This review systematically introduces the pyroelectric effect and evaluation of pyroelectric materials and follows by analyzing and concluding the novel properties corresponding to four kinds of main pyroelectric materials. The emphasis of this review focuses on several significant and practical applications of pyroelectric materials in thermal energy harvesting from the external environment, pyroelectric sensing, and imaging, even some electrochemical applications including hydrogen generation, wastewater treatment, sterilization, and disinfection. Finally, the development direction of pyroelectric materials, potential challenges and opportunities in the future are all discussed and proposed. Through systematical conclusion and analysis of the latest research progress in the recent two decades, this review may provide significant guide and inspiration in the development of pyroelectric materials.
Assuntos
Eletricidade , Temperatura Alta , TemperaturaRESUMO
Materials that are capable of actuation in response to a variety of external stimuli are of significant interest for applications in sensors, soft robotics, and biomedical devices. Here, we present a class of actuators using composites based on a polymer of intrinsic microporosity (PIM). By adding an activated carbon (AX21) filler to a PIM, the composite exhibits repeatable actuation upon solvent evaporation and wetting and it is possible to achieve highly controlled three-dimensional actuation. Curled composite actuators are shown to open upon exposure to a solvent and close as a result of solvent evaporation. The degree of curling and actuation is controlled by adjusting the amount of filler and evaporation rate of the solvent casting process, while the actuation speed is controlled by adjusting the type of solvent. The range of forces and actuation speed produced by the composite is demonstrated using acetone, ethanol, and dimethyl sulfoxide as the solvent. The maximum contractile stress produced upon solvent desorption in the pure PIM polymer reached 12 MPa, with an ultimate force over 20â¯000 times the weight of a sample. This form of the composite actuator is insensitive to humidity and water, which makes it applicable in an aqueous environment, and can survive a wide range of temperatures. These characteristics make it a promising actuator for the diverse range of operating conditions in robotic and medical applications. The mechanism of actuation is discussed, which is based on the asymmetric distribution of the carbon filler particles that leads to a bilayer structure and the individual layers expand and contract differently in response to solvent wetting and evaporation, respectively. Finally, we demonstrate the application of the actuator as a potential drug delivery vehicle, with capacity for encapsulating two kinds of drugs and reduced drug leakage in comparison to existing technologies.
RESUMO
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
RESUMO
The development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.
RESUMO
Wearable electronics are becoming increasingly important for medical applications as they have revolutionized the way physiological parameters are monitored. Ferroelectric materials show spontaneous polarization below the Curie temperature, which changes with electric field, temperature, and mechanical deformation. Therefore, they have been widely used in sensor and actuator applications. In addition, these materials can be used for conversion of human-body energy into electricity for powering wearable electronics. In this paper, we review the recent advances in flexible ferroelectric materials for wearable human energy harvesting and sensing. To meet the performance requirements for medical applications, the most suitable materials and manufacturing techniques are reviewed. The approaches used to enhance performance and achieve long-term sustainability and multi-functionality by integrating other active sensing mechanisms (e.g. triboelectric and piezoresistive effects) are discussed. Data processing and transmission as well as the contribution of wearable piezoelectric devices in early disease detection and monitoring vital signs are reviewed.
RESUMO
As the world's demand for alternative energy increases, the development of green energy harvesters becomes ever more important. As a result, the creation of triboelectric (TENG), piezoelectric (PENG), and pyroelectric nanogenerators, electromagnetic generators (EMG), solar cells, and electrochemical cells is attracting interest in an effort to convert mechanical, thermal, magnetic, solar, and chemical energy into electricity. In order to take advantage of the ambient energies from our surrounding environment, the design of hybridized generator units that can simultaneously scavenge energy in a variety of forms continues to develop. These systems are being considered to satisfy the energy needs of a range of electronic devices and adapt to a variety of working environments. This review demonstrates the latest progress in hybridized nanogenerators in accordance with their structure, operating principle, and applications. These studies demonstrate new approaches to developing hybrid techniques and novel assemblies for efficiently harvesting environmental energy from a number of sources.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10â V). A piezoelectric coefficient of d33 ≈10-16â pC N-1 , and pyroelectric coefficient of p≈25.8â µC m-2 K-1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of ϵ 33 σ ≈ 6.3.
RESUMO
Piezoelectric materials have been analyzed for over 100 years, due to their ability to convert mechanical vibrations into electric charge or electric fields into a mechanical strain for sensor, energy harvesting, and actuator applications. A more recent development is the coupling of piezoelectricity and electro-chemistry, termed piezo-electro-chemistry, whereby the piezoelectrically induced electric charge or voltage under a mechanical stress can influence electro-chemical reactions. There is growing interest in such coupled systems, with a corresponding growth in the number of associated publications and patents. This review focuses on recent development of the piezo-electro-chemical coupling multiple systems based on various piezoelectric materials. It provides an overview of the basic characteristics of piezoelectric materials and comparison of operating conditions and their overall electro-chemical performance. The reported piezo-electro-chemical mechanisms are examined in detail. Comparisons are made between the ranges of material morphologies employed, and typical operating conditions are discussed. In addition, potential future directions and applications for the development of piezo-electro-chemical hybrid systems are described. This review provides a comprehensive overview of recent studies on how piezoelectric materials and devices have been applied to control electro-chemical processes, with an aim to inspire and direct future efforts in this emerging research field.
RESUMO
With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 µW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals.