Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(22): 8969-8980, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31072101

RESUMO

This Article describes the relationship between molecular structure, and the rectification of tunneling current, in tunneling junctions based on self-assembled monolayers (SAMs). Molecular dipoles from simple organic functional groups (amide, urea, and thiourea) were introduced into junctions with the structure AgTS/S(CH2) nR(CH2) mCH3//Ga2O3/EGaIn. Here, R is an n-alkyl fragment (-CH2-)2 or 3, an amide group (either -CONH- or -NHCO-), a urea group (-NHCONH-), or a thiourea group (-NHCSNH-). The amide, urea, or thiourea groups introduce a localized electric dipole moment into the SAM and change the polarizability of that section of the SAM, but do not produce large, electronically delocalized groups or change other aspects of the tunneling barrier. This local change in electronic properties correlates with a statistically significant, but not large, rectification of current ( r+) at ±1.0 V (up to r+ ≈ 20). The results of this work demonstrate that the simplest form of rectification of current at ±1.0 V, in EGaIn junctions, is an interfacial effect, and is caused by a change in the work function of the SAM-modified silver electrode due to the proximity of the dipole associated with the amide (or related) group, and not to a change in the width or mean height of the tunneling barrier.

2.
J Am Chem Soc ; 139(22): 7624-7631, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28492077

RESUMO

This paper describes charge transport by tunneling across self-assembled monolayers (SAMs) of thiol-terminated derivatives of oligo(ethylene glycol) (HS(CH2CH2O)nCH3; HS(EG)nCH3); these SAMs are positioned between gold bottom electrodes and Ga2O3/EGaIn top electrodes. Comparison of the attenuation factor (ß of the simplified Simmons equation) across these SAMs with the corresponding value obtained with length-matched SAMs of oligophenyls (HS(Ph)nH) and n-alkanethiols (HS(CH2)nH) demonstrates that SAMs of oligo(ethylene glycol) have values of ß (ß(EG)n = 0.29 ± 0.02 natom-1 and ß = 0.24 ± 0.01 Å-1) indistinguishable from values for SAMs of oligophenyls (ß(Ph)n = 0.28 ± 0.03 Å-1), and significantly lower than those of SAMs of n-alkanethiolates (ß(CH2)n = 0.94 ± 0.02 natom-1 and 0.77 ± 0.03 Å-1). There are two possible origins for this low value of ß. The more probable involves hole tunneling by superexchange, which rationalizes the weak dependence of the rate of charge transport on the length of the molecules of HS(EG)nCH3 using interactions among the high-energy, occupied orbitals associated with the lone-pair electrons on oxygen. Based on this mechanism, SAMs of oligo(ethylene glycol)s are good conductors (by hole tunneling) but good insulators (by electron and/or hole drift conduction). This observation suggests SAMs derived from these or electronically similar molecules are a new class of electronic materials. A second but less probable mechanism for this unexpectedly low value of ß for SAMs of S(EG)nCH3 rests on the possibility of disorder in the SAM and a systematic discrepancy between different estimates of the thickness of these SAMs.

3.
Angew Chem Int Ed Engl ; 54(49): 14743-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26450132

RESUMO

This work examines charge transport (CT) through self-assembled monolayers (SAMs) of oligoglycines having an N-terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n-alkanethiolates). Comparisons of rates of charge transport-using junctions with the structure Au(TS)/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high-energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).

4.
J Am Chem Soc ; 137(18): 5948-54, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25871745

RESUMO

Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-ß1d1 - ß2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and ßi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor ß.


Assuntos
Gálio/química , Índio/química , Compostos Organometálicos/química , Prata/química , Transporte de Elétrons , Estrutura Molecular
5.
Langmuir ; 31(11): 3431-40, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25738531

RESUMO

The need for effective enzymatic depolymerization of cellulose has stimulated an interest in interactions between protein and cellulose. Techniques utilized for quantitative measurements of protein-cellulose noncovalent association include microgravimetry, calorimetry, and atomic force microscopy (AFM), none of which differentiate between specific protein-cellulose binding and nonspecific adhesion. Here, we describe an AFM approach that differentiates nonspecific from specific interactions between cellulose-binding modules (CBMs) and cellulose. We demonstrate that the "mismatched" interaction between murine galectin-3, a lectin with no known affinity for cellulose, and cellulose shows molecular recognition force microscopy profiles similar to those observed during the interaction of a "matched" clostridial CBM3a with the same substrate. We also examine differences in binding probabilities and rupture profiles during CBM-cellulose binding experiments in the presence and absence of a blocking agent-a substrate specific for CBM that presumably blocks binding sites. By comparison of the behavior of the two proteins, we separate specific (i.e., blockable) and nonspecific adhesion events and show that both classes of interaction exhibit nearly identical rupture forces (45 pN at ∼0.4 nN/s). Our work provides an important caveat for the interpretation of protein-carbohydrate binding by force spectroscopy; delineation of the importance of such interactions to other classes of binding warrants further study.


Assuntos
Celulose/química , Microscopia de Força Atômica/métodos , Sítios de Ligação , Calorimetria , Ligação Proteica , Ausência de Peso
6.
J Am Chem Soc ; 137(11): 3852-8, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25751593

RESUMO

This paper describes the influence of the substitution of fluorine for hydrogen on the rate of charge transport by hole tunneling through junctions of the form Ag(TS)O2C(CH2)n(CF2)(m)T//Ga2O3/EGaIn, where T is methyl (CH3) or trifluoromethyl (CF3). Alkanoate-based self-assembled monolayers (SAMs) having perfluorinated groups (R(F)) show current densities that are lower (by factors of 20-30) than those of the homologous hydrocarbons (R(H)), while the attenuation factors of the simplified Simmons equation for methylene (ß = (1.05 ± 0.02)n(CH2)(-1)) and difluoromethylene (ß = (1.15 ± 0.02)n(CF2)(-1)) are similar (although the value for (CF2)n is statistically significantly larger). A comparative study focusing on the terminal fluorine substituents in SAMs of ω-tolyl- and -phenyl-alkanoates suggests that the C-F//Ga2O3 interface is responsible for the lower tunneling currents for CF3. The decrease in the rate of charge transport in SAMs with R(F) groups (relative to homologous R(H) groups) is plausibly due to an increase in the height of the tunneling barrier at the T//Ga2O3 interface, and/or to weak van der Waals interactions at that interface.


Assuntos
Gálio/química , Compostos de Prata/química , Eletroquímica , Halogenação , Hidrocarbonetos Fluorados/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
7.
ACS Nano ; 9(2): 1471-7, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25578805

RESUMO

This paper investigates the influence of the interface between a gold or silver metal electrode and an n-alkyl SAM (supported on that electrode) on the rate of charge transport across junctions with structure Met(Au or Ag)(TS)/A(CH2)nH//Ga2O3/EGaIn by comparing measurements of current density, J(V), for Met/AR = Au/thiolate (Au/SR), Ag/thiolate (Ag/SR), Ag/carboxylate (Ag/O2CR), and Au/acetylene (Au/C≡CR), where R is an n-alkyl group. Values of J0 and ß (from the Simmons equation) were indistinguishable for these four interfaces. Since the anchoring groups, A, have large differences in their physical and electronic properties, the observation that they are indistinguishable in their influence on the injection current, J0 (V = 0.5) indicates that these four Met/A interfaces do not contribute to the shape of the tunneling barrier in a way that influences J(V).

8.
J Am Chem Soc ; 136(48): 16919-25, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25380500

RESUMO

This paper compares rates of charge transport across self-assembled monolayers (SAMs) of n-alkanethiolates having odd and even numbers of carbon atoms (nodd and neven) using junctions with the structure M(TS)/SAM//Ga2O3/EGaIn (M = Au or Ag). Measurements of current density, J(V), across SAMs of n-alkanethiolates on Au(TS) and Ag(TS) demonstrated a statistically significant odd-even effect on Au(TS), but not on Ag(TS), that could be detected using this technique. Statistical analysis showed the values of tunneling current density across SAMs of n-alkanethiolates on Au(TS) with nodd and neven belonging to two separate sets, and while there is a significant difference between the values of injection current density, J0, for these two series (log|J0Au,even| = 4.0 ± 0.3 and log|J0Au,odd| = 4.5 ± 0.3), the values of tunneling decay constant, ß, for nodd and neven alkyl chains are indistinguishable (ßAu,even = 0.73 ± 0.02 Å(-1), and ßAu,odd= 0.74 ± 0.02 Å(-1)). A comparison of electrical characteristics across junctions of n-alkanethiolate SAMs on gold and silver electrodes yields indistinguishable values of ß and J0 and indicates that a change that substantially alters the tilt angle of the alkyl chain (and, therefore, the thickness of the SAM) has no influence on the injection current density across SAMs of n-alkanethiolates.


Assuntos
Alcanos/química , Compostos de Sulfidrila/química , Alcanos/síntese química , Transporte de Elétrons , Ouro/química , Prata/química , Compostos de Sulfidrila/síntese química
9.
Nano Lett ; 14(6): 3521-6, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24840009

RESUMO

Junctions with the structure Ag(TS)/S(CH2)nT//Ga2O3/EGaIn (where S(CH2)nT is a self-assembled monolayer, SAM, of n-alkanethiolate bearing a terminal functional group T) make it possible to examine the response of rates of charge transport by tunneling to changes in the strength of the interaction between T and Ga2O3. Introducing a series of Lewis acidic/basic functional groups (T = -OH, -SH, -CO2H, -CONH2, and -PO3H) at the terminus of the SAM gave values for the tunneling current density, J(V) in A/cm(2), that were indistinguishable (i.e., differed by less than a factor of 3) from the values observed with n-alkanethiolates of equivalent length. The insensitivity of the rate of tunneling to changes in the terminal functional group implies that replacing weak van der Waals contact interactions with stronger hydrogen- or ionic bonds at the T//Ga2O3 interface does not change the shape (i.e., the height or width) of the tunneling barrier enough to affect rates of charge transport. A comparison of the injection current, J0, for T = -CO2H, and T = -CH2CH3--two groups having similar extended lengths (in Å, or in numbers of non-hydrogen atoms)--suggests that both groups make indistinguishable contributions to the height of the tunneling barrier.

10.
Angew Chem Int Ed Engl ; 53(15): 3889-93, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24596177

RESUMO

This paper compares rates of charge transport by tunneling across junctions with the structures Ag(TS) X(CH2 )2n CH3 //Ga2 O3 /EGaIn (n=1-8 and X= SCH2  and O2 C); here Ag(TS) is template-stripped silver, and EGaIn is the eutectic alloy of gallium and indium. Its objective was to compare the tunneling decay coefficient (ß, Å(-1) ) and the injection current (J0 , A cm(-2) ) of the junctions comprising SAMs of n-alkanethiolates and n-alkanoates. Replacing Ag(TS) SCH2 -R with Ag(TS) O2 C-R (R=alkyl chains) had no significant influence on J0 (ca. 3×10(3)  A cm(-2) ) or ß (0.75-0.79 Å(-1) )-an indication that such changes (both structural and electronic) in the Ag(TS) XR interface do not influence the rate of charge transport. A comparison of junctions comprising oligo(phenylene)carboxylates and n-alkanoates showed, as expected, that ß for aliphatic (0.79 Å(-1) ) and aromatic (0.60 Å(-1) ) SAMs differed significantly.

11.
J Am Chem Soc ; 136(1): 16-9, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24350722

RESUMO

This paper describes a physical-organic study of the effect of uncharged, polar, functional groups on the rate of charge transport by tunneling across self-assembled monolayer (SAM)-based large-area junctions of the form Ag(TS)S(CH2)(n)M(CH2)(m)T//Ga2O3/EGaIn. Here Ag(TS) is a template-stripped silver substrate, -M- and -T are "middle" and "terminal" functional groups, and EGaIn is eutectic gallium-indium alloy. Twelve uncharged polar groups (-T = CN, CO2CH3, CF3, OCH3, N(CH3)2, CON(CH3)2, SCH3, SO2CH3, Br, P(O)(OEt)2, NHCOCH3, OSi(OCH3)3), having permanent dipole moments in the range 0.5 < µ < 4.5, were incorporated into the SAM. A comparison of the electrical characteristics of these junctions with those of junctions formed from n-alkanethiolates led to the conclusion that the rates of charge tunneling are insensitive to the replacement of terminal alkyl groups with the terminal polar groups in this set. The current densities measured in this work suggest that the tunneling decay parameter and injection current for SAMs terminated in nonpolar n-alkyl groups, and polar groups selected from common polar organic groups, are statistically indistinguishable.


Assuntos
Ligas/química , Gálio/química , Índio/química , Prata/química , Modelos Moleculares , Compostos Orgânicos/química , Propriedades de Superfície
12.
J Am Chem Soc ; 135(41): 15579-84, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24044696

RESUMO

The mechanism (or mechanisms) of enthalpy-entropy (H/S) compensation in protein-ligand binding remains controversial, and there are still no predictive models (theoretical or experimental) in which hypotheses of ligand binding can be readily tested. Here we describe a particularly well-defined system of protein and ligands--human carbonic anhydrase (HCA) and a series of benzothiazole sulfonamide ligands with different patterns of fluorination--that we use to define enthalpy/entropy (H/S) compensation in this system thermodynamically and structurally. The binding affinities of these ligands (with the exception of one ligand, in which the deviation is understood) to HCA are, despite differences in fluorination pattern, indistinguishable; they nonetheless reflect significant and compensating changes in enthalpy and entropy of binding. Analysis reveals that differences in the structure and thermodynamic properties of the waters surrounding the bound ligands are an important contributor to the observed H/S compensation. These results support the hypothesis that the molecules of water filling the active site of a protein, and surrounding the ligand, are as important as the contact interactions between the protein and the ligand for biomolecular recognition, and in determining the thermodynamics of binding.


Assuntos
Benzotiazóis/química , Anidrases Carbônicas/química , Sulfonamidas/química , Água/química , Sítios de Ligação , Anidrases Carbônicas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Termodinâmica
13.
J Phys Chem B ; 117(17): 4755-62, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23537272

RESUMO

Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force-distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose-galectin-3, as well as the control pairs lactose-KDPG aldolase, and mannose-galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (>250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand-receptor pair lactose-G3. Increased contact force applied to two control systems with no known affinity, mannose-G3 and lactose-KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose-G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand-receptor interactions.


Assuntos
Aldeído Liases/química , Galectina 3/química , Lactose/química , Manose/química , Aldeído Liases/genética , Aldeído Liases/metabolismo , Animais , Galectina 3/genética , Galectina 3/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Proteínas Imobilizadas/química , Camundongos , Microscopia de Força Atômica , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Silício/química , Compostos de Silício/química
14.
Beilstein J Nanotechnol ; 3: 464-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23019540

RESUMO

The mechanical properties of organic and biomolecular thin films on surfaces play an important role in a broad range of applications. Although force-modulation microscopy (FMM) is used to map the apparent elastic properties of such films with high lateral resolution in air, it has rarely been applied in aqueous media. In this letter we describe the use of FMM to map the apparent elastic properties of self-assembled monolayers and end-tethered protein thin films in aqueous media. Furthermore, we describe a simple analysis of the contact mechanics that enables the selection of FMM imaging parameters and thus yields a reliable interpretation of the FMM image contrast.

15.
ACS Appl Mater Interfaces ; 4(8): 3932-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22834789

RESUMO

We report a versatile functionalization and pattering technique that permits multicomponent pattern-specific modification of indium tin oxide (ITO) with organic species. The method relies on a bilayered molecular system that simultaneously protects ITO from degradation and provides uniform chemical functionality suitable for further elaboration. Pattern-specific modification is achieved via specific reaction between functionality on an elastomeric stamp and functionality of cognate reactivity at the surface of a bilayered molecular substrate. We demonstrate that a single molecular system in a combination with different printing approaches can be used to immobilize multiple organic functionalities with exquisite spatial control on a single ITO surface. Our study provides the first general approach that permits patterning and functionalization of ITO with different molecules using a single set of printing conditions and materials.


Assuntos
Compostos de Estanho/química , Técnicas Biossensoriais/métodos , Ácidos Carboxílicos/química , Catálise , Química/métodos , Elasticidade , Eletrodos , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Compostos Orgânicos/química , Fotoquímica/métodos , Ácidos Sulfônicos/química , Propriedades de Superfície
16.
Biopolymers ; 97(10): 761-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22806495

RESUMO

Atomic force microscopy (AFM) is a versatile technique for the investigation of noncovalent molecular associations between ligand-substrate pairs. Surface modification of silicon nitride AFM cantilevers is most commonly achieved using organic trialkoxysilanes. However, susceptibility of the Si−O bond to hydrolysis and formation of polymeric aggregates diminishes attractiveness of this method for AFM studies. Attachment techniques that facilitate immobilization of a wide variety of organic and biological molecules via the stable Si−C bond on silicon nitride cantilevers would be of great value to the field of molecular recognition force spectroscopy. Here, we report (1) the formation of stable, highly oriented monolayers on the tip of silicon nitride cantilevers and (2) demonstrate their utility in the investigation of noncovalent protein-ligand interactions using molecular recognition force spectroscopy. The monolayers are formed through hydrosilylation of hydrogen-terminated silicon nitride AFM probes using a protected α-amino-ω-alkene. This approach facilitates the subsequent conjugation of biomolecules. The resulting biomolecules are bound to the tip by a strong Si−C bond, completely uniform with regard to both epitope density and substrate orientation, and highly suitable for force microscopy studies. We show that this attachment technique can be used to measure the unbinding profiles of tip-immobilized lactose and surface-immobilized galectin-3. Overall, the proposed technique is general, operationally simple, and can be expanded to anchor a wide variety of epitopes to a silicon nitride cantilever using a stable Si−C bond.


Assuntos
Microscopia de Força Atômica/métodos , Hidrólise , Ligantes , Oxigênio/química , Proteínas/química , Silício/química
17.
J Vis Exp ; (58)2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22214997

RESUMO

The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity. Microcontact printing (µCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces. Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 µm. In contrast to traditional printing, inkless µCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features. However, up till now, inkless µCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation. Here, we report a simple, reliable high-throughput method for patterning passivated silicon and germanium with reactive organic monolayers and demonstrate selective functionalization of the patterned substrates with both small molecules and proteins. The technique utilizes a preformed NHS-reactive bilayered system on oxide-free silicon and germanium. The NHS moiety is hydrolyzed in a pattern-specific manner with a sulfonic acid-modified acrylate stamp to produce chemically distinct patterns of NHS-activated and free carboxylic acids. A significant limitation to the resolution of many µCP techniques is the use of PDMS material which lacks the mechanical rigidity necessary for high fidelity transfer. To alleviate this limitation we utilized a polyurethane acrylate polymer, a relatively rigid material that can be easily functionalized with different organic moieties. Our patterning approach completely protects both silicon and germanium from chemical oxidation, provides precise control over the shape and size of the patterned features, and gives ready access to chemically discriminated patterns that can be further functionalized with both organic and biological molecules. The approach is general and applicable to other technologically-relevant surfaces.


Assuntos
Germânio/química , Nanotecnologia/métodos , Proteínas/química , Semicondutores , Silício/química , Microscopia de Fluorescência , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA