Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Science ; 383(6687): 1080-1083, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452084

RESUMO

High-Q microresonators are indispensable components of photonic integrated circuits and offer several useful operational modes. However, these modes cannot be reconfigured after fabrication because they are fixed by the resonator's physical geometry. In this work, we propose a Moiré speedup dispersion tuning method that enables a microresonator device to operate in any of three modes. Electrical tuning of Vernier coupled rings switches operating modality to Brillouin laser, bright microcomb, and dark microcomb operation on demand using the same hybrid-integrated device. Brillouin phase matching and microcomb operation across the telecom C-band is demonstrated. Likewise, by using a single-pump wavelength, the operating mode can be switched. As a result, one universal design can be applied across a range of applications. The device brings flexible mixed-mode operation to integrated photonic circuits.

2.
Nature ; 627(8004): 534-539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448599

RESUMO

Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb1-3. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Pérot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of -96 dBc Hz-1 at 100 Hz offset frequency that decreases to -135 dBc Hz-1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.

3.
Opt Lett ; 49(5): 1197-1200, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426972

RESUMO

Thin-film lithium niobate (TFLN) is an attractive platform for photonic applications on account of its wide bandgap, its large electro-optic coefficient, and its large nonlinearity. Since these characteristics are used in systems that require a coherent light source, size, weight, power, and cost can be reduced and reliability enhanced by combining TFLN processing and heterogeneous laser fabrication. Here, we report the fabrication of laser devices on a TFLN wafer and also the coprocessing of five different GaAs-based III-V epitaxial structures, including InGaAs quantum wells and InAs quantum dots. Lasing is observed at wavelengths near 930, 1030, and 1180 nm, which, if frequency-doubled using TFLN, would produce blue, green, and orange visible light. A single-sided power over 25 mW is measured with an integrating sphere.

4.
Nanoscale ; 16(6): 2966-2973, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38251961

RESUMO

Reliable quantum dot lasers on silicon are a key remaining challenge to successful integrated silicon photonics. In this work, quantum dot (QD) lasers on silicon with and without misfit dislocation trapping layers are aged for 12 000 hours and are compared to QD lasers on native GaAs aged for 8400 hours. The non-trapping-layer (TL) laser on silicon degrades heavily during this time, but much more modest gradual degradation is observed for the other two devices. Electroluminescence imaging reveals relatively uniform gradual dimming for the aged TL laser on silicon. At the same time, we find nanoscale dislocation loop defects throughout the quantum dot-based active region of all three aged lasers via electron microscopy. The Burgers vector of these loops is consistent with . We suggest that the primary source of degradation, however, is the generation and migration of point defects that substantially enhance non-radiative recombination in the active region, the visible symptom of which is the formation of dislocation loops. To prevent this, we propose that laser fabrication should be switched from deeply etched to shallow etch ridges where the active region remains intact near the mesa. Additionally, post-growth annealing and altered growth conditions in the active region should be explored to minimize the grown-in point defect density.

5.
Nat Commun ; 15(1): 751, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272873

RESUMO

Silicon photonics has developed into a mainstream technology driven by advances in optical communications. The current generation has led to a proliferation of integrated photonic devices from thousands to millions-mainly in the form of communication transceivers for data centers. Products in many exciting applications, such as sensing and computing, are around the corner. What will it take to increase the proliferation of silicon photonics from millions to billions of units shipped? What will the next generation of silicon photonics look like? What are the common threads in the integration and fabrication bottlenecks that silicon photonic applications face, and which emerging technologies can solve them? This perspective article is an attempt to answer such questions. We chart the generational trends in silicon photonics technology, drawing parallels from the generational definitions of CMOS technology. We identify the crucial challenges that must be solved to make giant strides in CMOS-foundry-compatible devices, circuits, integration, and packaging. We identify challenges critical to the next generation of systems and applications-in communication, signal processing, and sensing. By identifying and summarizing such challenges and opportunities, we aim to stimulate further research on devices, circuits, and systems for the silicon photonics ecosystem.

6.
Opt Express ; 31(21): 34325-34347, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859192

RESUMO

It is widely acknowledged that the phase noise of an optical frequency comb primarily stems from the common mode (carrier-envelope) and the repetition rate phase noise. However, owing to technical noise sources or other intricate intra-cavity factors, residual phase noise components, distinct from the common mode and the repetition rate phase noise, may also exist. We introduce a measurement technique that combines subspace tracking and multi-heterodyne coherent detection for the separation of different phase noise sources. This method allows us to break down the overall phase noise sources associated with a specific comb-line into distinct phase noise components associated with the common mode, the repetition rate and the residual phase noise terms. The measurement method allow us, for the first time, to identify and measure residual phase noise sources of a frequency modulated mode-locked laser.

7.
Opt Lett ; 48(15): 3853-3856, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527066

RESUMO

Soliton mode locking in high-Q microcavities provides a way to integrate frequency comb systems. Among material platforms, AlGaAs has one of the largest optical nonlinearity coefficients, and is advantageous for low-pump-threshold comb generation. However, AlGaAs also has a very large thermo-optic effect that destabilizes soliton formation, and femtosecond soliton pulse generation has only been possible at cryogenic temperatures. Here, soliton generation in AlGaAs microresonators at room temperature is reported for the first time, to the best of our knowledge. The destabilizing thermo-optic effect is shown to instead provide stability in the high-repetition-rate soliton regime (corresponding to a large, normalized second-order dispersion parameter D2/κ). Single soliton and soliton crystal generation with sub-milliwatt optical pump power are demonstrated. The generality of this approach is verified in a high-Q silica microtoroid where manual tuning into the soliton regime is demonstrated. Besides the advantages of large optical nonlinearity, these AlGaAs devices are natural candidates for integration with semiconductor pump lasers. Furthermore, the approach should generalize to any high-Q resonator material platform.

8.
Nature ; 620(7972): 78-85, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532812

RESUMO

Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects1-5. However, in optical systems such as microwave synthesizers6, optical gyroscopes7 and atomic clocks8, photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format-that is, on a single chip-for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III-V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon.

9.
Opt Express ; 31(15): 23952-23965, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475235

RESUMO

A means of athermalizing unbalanced Mach-Zehnder interferometers on a 300 mm silicon photonics foundry platform utilizing Si and SiN layers to produce the path imbalance is demonstrated. This technique can be applied to all other forms of finite impulse response filters, such as arrayed waveguide gratings. Wafer scale performance of fabricated devices is analyzed for their expected performance in the target application: odd-even channel (de)-interleavers for dense wavelength division multiplexing links. Finally, a method is proposed to improve device performance to be more robust to fabrication variations while simultaneously maintaining athermality.

10.
Light Sci Appl ; 12(1): 182, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491305

RESUMO

Frequency-modulated (FM) laser combs, which offer a quasi-continuous-wave output and a flat-topped optical spectrum, are emerging as a promising solution for wavelength-division multiplexing applications, precision metrology, and ultrafast optical ranging. The generation of FM combs relies on spatial hole burning, group velocity dispersion, Kerr nonlinearity, and four-wave mixing (FWM). While FM combs have been widely observed in quantum cascade Fabry-Perot (FP) lasers, the requirement for a low-dispersion FP cavity can be a challenge in platforms where the waveguide dispersion is mainly determined by the material. Here we report a 60 GHz quantum-dot (QD) mode-locked laser in which both the amplitude-modulated (AM) and the FM comb can be generated independently. The high FWM efficiency of -5 dB allows the QD laser to generate FM comb efficiently. We also demonstrate that the Kerr nonlinearity can be practically engineered to improve the FM comb bandwidth without the need for GVD engineering. The maximum 3-dB bandwidth that our QD platform can deliver is as large as 2.2 THz. This study gives novel insights into the improvement of FM combs and paves the way for small-footprint, electrically pumped, and energy-efficient frequency combs for silicon photonic integrated circuits (PICs).

11.
Light Sci Appl ; 12(1): 162, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380663

RESUMO

Stable laser emission with narrow linewidth is of critical importance in many applications, including coherent communications, LIDAR, and remote sensing. In this work, the physics underlying spectral narrowing of self-injection-locked on-chip lasers to Hz-level lasing linewidth is investigated using a composite-cavity structure. Heterogeneously integrated III-V/SiN lasers operating with quantum-dot and quantum-well active regions are analyzed with a focus on the effects of carrier quantum confinement. The intrinsic differences are associated with gain saturation and carrier-induced refractive index, which are directly connected with 0- and 2-dimensional carrier densities of states. Results from parametric studies are presented for tradeoffs involved with tailoring the linewidth, output power, and injection current for different device configurations. Though both quantum-well and quantum-dot devices show similar linewidth-narrowing capabilities, the former emits at a higher optical power in the self-injection-locked state, while the latter is more energy-efficient. Lastly, a multi-objective optimization analysis is provided to optimize the operation and design parameters. For the quantum-well laser, minimizing the number of quantum-well layers is found to decrease the threshold current without significantly reducing the output power. For the quantum-dot laser, increasing the quantum-dot layers or density in each layer increases the output power without significantly increasing the threshold current. These findings serve to guide more detailed parametric studies to produce timely results for engineering design.

12.
Opt Lett ; 48(10): 2539-2542, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186702

RESUMO

Heat accumulation prevents semiconductor lasers from operating at their full potential. This can be addressed through heterogeneous integration of a III-V laser stack onto non-native substrate materials with high thermal conductivity. Here, we demonstrate III-V quantum dot lasers heterogeneously integrated on silicon carbide (SiC) substrates with high temperature stability. A large T0 of 221 K with a relatively temperature-insensitive operation occurs near room temperature, while lasing is sustained up to 105°C. The SiC platform presents a unique and ideal candidate for realizing monolithic integration of optoelectronics, quantum, and nonlinear photonics.

13.
Nat Commun ; 14(1): 1802, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002215

RESUMO

Quantum fluctuations disrupt the cyclic motions of dissipative Kerr solitons (DKSs) in nonlinear optical microresonators and consequently cause timing jitter of the emitted pulse trains. This problem is translated to the performance of several applications that employ DKSs as compact frequency comb sources. Recently, device manufacturing and noise reduction technologies have advanced to unveil the quantum properties of DKSs. Here we investigate the quantum decoherence of DKSs existing in normal-dispersion microresonators known as dark pulses. By virtue of the very large material nonlinearity, we directly observe the quantum decoherence of dark pulses in an AlGaAs-on-insulator microresonator, and the underlying dynamical processes are resolved by injecting stochastic photons into the microresonators. Moreover, phase correlation measurements show that the uniformity of comb spacing of quantum-limited dark pulses is better than 1.2 × 10-16 and 2.5 × 10-13 when normalized to the optical carrier frequencies and repetition frequencies, respectively. Comparing DKSs generated in different material platforms explicitly confirms the advantages of dark pulses over bright solitons in terms of quantum-limited coherence. Our work establishes a critical performance assessment of DKSs, providing guidelines for coherence engineering of chip-scale optical frequency combs.

14.
eLight ; 3(1): 1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36618904

RESUMO

Integrated silicon photonics has sparked a significant ramp-up of investment in both academia and industry as a scalable, power-efficient, and eco-friendly solution. At the heart of this platform is the light source, which in itself, has been the focus of research and development extensively. This paper sheds light and conveys our perspective on the current state-of-the-art in different aspects of application-driven on-chip silicon lasers. We tackle this from two perspectives: device-level and system-wide points of view. In the former, the different routes taken in integrating on-chip lasers are explored from different material systems to the chosen integration methodologies. Then, the discussion focus is shifted towards system-wide applications that show great prospects in incorporating photonic integrated circuits (PIC) with on-chip lasers and active devices, namely, optical communications and interconnects, optical phased array-based LiDAR, sensors for chemical and biological analysis, integrated quantum technologies, and finally, optical computing. By leveraging the myriad inherent attractive features of integrated silicon photonics, this paper aims to inspire further development in incorporating PICs with on-chip lasers in, but not limited to, these applications for substantial performance gains, green solutions, and mass production.

15.
Nat Commun ; 14(1): 66, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604409

RESUMO

The emergence of parallel convolution-operation technology has substantially powered the complexity and functionality of optical neural networks (ONN) by harnessing the dimension of optical wavelength. However, this advanced architecture faces remarkable challenges in high-level integration and on-chip operation. In this work, convolution based on time-wavelength plane stretching approach is implemented on a microcomb-driven chip-based photonic processing unit (PPU). To support the operation of this processing unit, we develop a dedicated control and operation protocol, leading to a record high weight precision of 9 bits. Moreover, the compact architecture and high data loading speed enable a preeminent photonic-core compute density of over 1 trillion of operations per second per square millimeter (TOPS mm-2). Two proof-of-concept experiments are demonstrated, including image edge detection and handwritten digit recognition, showing comparable processing capability compared to that of a digital computer. Due to the advanced performance and the great scalability, this parallel photonic processing unit can potentially revolutionize sophisticated artificial intelligence tasks including autonomous driving, video action recognition and image reconstruction.

16.
Nat Commun ; 13(1): 7862, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543782

RESUMO

The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.

17.
Light Sci Appl ; 11(1): 299, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36229447

RESUMO

Monolithic integration of quantum dot (QD) gain materials onto Si photonic platforms via direct epitaxial growth is a promising solution for on-chip light sources. Recent developments have demonstrated superior device reliability in blanket hetero-epitaxy of III-V devices on Si at elevated temperatures. Yet, thick, defect management epi designs prevent vertical light coupling from the gain region to the Si-on-Insulator waveguides. Here, we demonstrate the first electrically pumped QD lasers grown by molecular beam epitaxy on a 300 mm patterned (001) Si wafer with a butt-coupled configuration. Unique growth and fabrication challenges imposed by the template architecture have been resolved, contributing to continuous wave lasing to 60 °C and a maximum double-side output power of 126.6 mW at 20 °C with a double-side wall-plug efficiency of 8.6%. The potential for robust on-chip laser operation and efficient low-loss light coupling to Si photonic circuits makes this heteroepitaxial integration platform on Si promising for scalable and low-cost mass production.

18.
Sci Adv ; 8(43): eabp9006, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306350

RESUMO

Lasers with hertz linewidths at time scales of seconds are critical for metrology, timekeeping, and manipulation of quantum systems. Such frequency stability relies on bulk-optic lasers and reference cavities, where increased size is leveraged to reduce noise but with the trade-off of cost, hand assembly, and limited applications. Alternatively, planar waveguide-based lasers enjoy complementary metal-oxide semiconductor scalability yet are fundamentally limited from achieving hertz linewidths by stochastic noise and thermal sensitivity. In this work, we demonstrate a laser system with a 1-s linewidth of 1.1 Hz and fractional frequency instability below 10-14 to 1 s. This low-noise performance leverages integrated lasers together with an 8-ml vacuum-gap cavity using microfabricated mirrors. All critical components are lithographically defined on planar substrates, holding potential for high-volume manufacturing. Consequently, this work provides an important advance toward compact lasers with hertz linewidths for portable optical clocks, radio frequency photonic oscillators, and related communication and navigation systems.

19.
Nat Commun ; 13(1): 5344, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097269

RESUMO

The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0 × 1018 Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR.

20.
Nature ; 610(7930): 54-60, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171286

RESUMO

Integrated photonics has profoundly affected a wide range of technologies underpinning modern society1-4. The ability to fabricate a complete optical system on a chip offers unrivalled scalability, weight, cost and power efficiency5,6. Over the last decade, the progression from pure III-V materials platforms to silicon photonics has significantly broadened the scope of integrated photonics, by combining integrated lasers with the high-volume, advanced fabrication capabilities of the commercial electronics industry7,8. Yet, despite remarkable manufacturing advantages, reliance on silicon-based waveguides currently limits the spectral window available to photonic integrated circuits (PICs). Here, we present a new generation of integrated photonics by directly uniting III-V materials with silicon nitride waveguides on Si wafers. Using this technology, we present a fully integrated PIC at photon energies greater than the bandgap of silicon, demonstrating essential photonic building blocks, including lasers, amplifiers, photodetectors, modulators and passives, all operating at submicrometre wavelengths. Using this platform, we achieve unprecedented coherence and tunability in an integrated laser at short wavelength. Furthermore, by making use of this higher photon energy, we demonstrate superb high-temperature performance and kHz-level fundamental linewidths at elevated temperatures. Given the many potential applications at short wavelengths, the success of this integration strategy unlocks a broad range of new integrated photonics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA