Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(20): 4230-4241, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37199721

RESUMO

PURPOSE: Targeted therapeutics are a goal of medicine. Methods for targeting T-cell lymphoma lack specificity for the malignant cell, leading to elimination of healthy cells. The T-cell receptor (TCR) is designed for antigen recognition. T-cell malignancies expand from a single clone that expresses one of 48 TCR variable beta (Vß) genes, providing a distinct therapeutic target. We hypothesized that a mAb that is exclusive to a specific Vß would eliminate the malignant clone while having minimal effects on healthy T cells. EXPERIMENTAL DESIGN: We identified a patient with large granular T-cell leukemia and sequenced his circulating T-cell population, 95% of which expressed Vß13.3. We developed a panel of anti-Vß13.3 antibodies to test for binding and elimination of the malignant T-cell clone. RESULTS: Therapeutic antibody candidates bound the malignant clone with high affinity. Antibodies killed engineered cell lines expressing the patient TCR Vß13.3 by antibody-dependent cellular cytotoxicity and TCR-mediated activation-induced cell death, and exhibited specific killing of patient malignant T cells in combination with exogenous natural killer cells. EL4 cells expressing the patient's TCR Vß13.3 were also killed by antibody administration in an in vivo murine model. CONCLUSIONS: This approach serves as an outline for development of therapeutics that can treat clonal T-cell-based malignancies and potentially other T-cell-mediated diseases. See related commentary by Varma and Diefenbach, p. 4024.


Assuntos
Linfoma de Células T , Receptores de Antígenos de Linfócitos T , Humanos , Camundongos , Animais , Rituximab , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
2.
J Clin Invest ; 130(1): 315-328, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31613796

RESUMO

Tyrosine kinase inhibitors (TKIs) induce molecular remission in the majority of patients with chronic myelogenous leukemia (CML), but the persistence of CML stem cells hinders cure and necessitates indefinite TKI therapy. We report that CML stem cells upregulate the expression of pleiotrophin (PTN) and require cell-autonomous PTN signaling for CML pathogenesis in BCR/ABL+ mice. Constitutive PTN deletion substantially reduced the numbers of CML stem cells capable of initiating CML in vivo. Hematopoietic cell-specific deletion of PTN suppressed CML development in BCR/ABL+ mice, suggesting that cell-autonomous PTN signaling was necessary for CML disease evolution. Mechanistically, PTN promoted CML stem cell survival and TKI resistance via induction of Jun and the unfolded protein response. Human CML cells were also dependent on cell-autonomous PTN signaling, and anti-PTN antibody suppressed human CML colony formation and CML repopulation in vivo. Our results suggest that targeted inhibition of PTN has therapeutic potential to eradicate CML stem cells.


Assuntos
Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte/genética , Sobrevivência Celular , Citocinas/genética , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia
3.
Methods Mol Biol ; 1827: 479-489, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196512

RESUMO

The engineering of antibodies and antibody fragments for affinity maturation, stability, and other biophysical characteristics is a common aspect of therapeutic development. Maturation of antibodies in B cells during the adaptive immune response is the result of a process called somatic hypermutation (SHM), in which the activation-induced cytidine deaminase (AID) acts to introduce mutations into immunoglobulin (Ig) genes. Iterative selection and clonal expansion of B cells containing affinity-enhancing mutations drive an increase in the overall affinity of antibodies. Here we describe the use of SHM coupled with mammalian cell surface display for the maturation of antibodies in vitro and the complementarity of these methods with the mining of immune lineages using next-generation sequencing (NGS).


Assuntos
Anticorpos/uso terapêutico , Afinidade de Anticorpos/imunologia , Hipermutação Somática de Imunoglobulina/genética , Antígenos/metabolismo , Sequência de Bases , Citidina Desaminase/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Ligação Proteica
4.
MAbs ; 6(5): 1274-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517312

RESUMO

Antibody engineering to enhance thermostability may enable further application and ease of use of antibodies across a number of different areas. A modified human IgG framework has been developed through a combination of engineering approaches, which can be used to stabilize antibodies of diverse specificity. This is achieved through a combination of complementarity-determining region (CDR)-grafting onto the stable framework, mammalian cell display and in vitro somatic hypermutation (SHM). This approach allows both stabilization and maturation to affinities beyond those of the original antibody, as shown by the stabilization of an anti-HA33 antibody by approximately 10°C and affinity maturation of approximately 300-fold over the original antibody. Specificities of 10 antibodies of diverse origin were successfully transferred to the stable framework through CDR-grafting, with 8 of these successfully stabilized, including the therapeutic antibodies adalimumab, stabilized by 9.9°C, denosumab, stabilized by 7°C, cetuximab stabilized by 6.9°C and to a lesser extent trastuzumab stabilized by 0.8°C. This data suggests that this approach may be broadly useful for improving the biophysical characteristics of antibodies across a number of applications.


Assuntos
Anticorpos/imunologia , Regiões Determinantes de Complementaridade/imunologia , Imunoglobulina G/imunologia , Engenharia de Proteínas/métodos , Adalimumab , Animais , Anticorpos/química , Anticorpos/genética , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Afinidade de Anticorpos/imunologia , Varredura Diferencial de Calorimetria , Técnicas de Visualização da Superfície Celular , Cetuximab , Regiões Determinantes de Complementaridade/genética , Denosumab , Células HEK293 , Humanos , Imunoglobulina G/genética , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Hipermutação Somática de Imunoglobulina , Temperatura , Trastuzumab
5.
J Biol Chem ; 289(48): 33557-67, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25320089

RESUMO

During somatic hypermutation (SHM), deamination of cytidine by activation-induced cytidine deaminase and subsequent DNA repair generates mutations within immunoglobulin V-regions. Nucleotide insertions and deletions (indels) have recently been shown to be critical for the evolution of antibody binding. Affinity maturation of 53 antibodies using in vitro SHM in a non-B cell context was compared with mutation patterns observed for SHM in vivo. The origin and frequency of indels seen during in vitro maturation were similar to that in vivo. Indels are localized to CDRs, and secondary mutations within insertions further optimize antigen binding. Structural determination of an antibody matured in vitro and comparison with human-derived antibodies containing insertions reveal conserved patterns of antibody maturation. These findings indicate that activation-induced cytidine deaminase acting on V-region sequences is sufficient to initiate authentic formation of indels in vitro and in vivo and that point mutations, indel formation, and clonal selection form a robust tripartite system for antibody evolution.


Assuntos
Regiões Determinantes de Complementaridade/genética , Mutação INDEL , Hipermutação Somática de Imunoglobulina , Regiões Determinantes de Complementaridade/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Feminino , Humanos , Masculino
6.
Methods ; 65(1): 44-56, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792919

RESUMO

Recent advances are described for the isolation and affinity maturation of antibodies that couple in vitro somatic hypermutation (SHM) with mammalian cell display, replicating key aspects of the adaptive immune system. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID). AID-directed SHM in vitro in non-B cells, combined with mammalian display of a library of human antibodies, initially naïve to SHM, can be used to isolate and affinity mature antibodies via iterative cycles of fluorescence-activated cell sorting (FACS) under increasingly stringent sort conditions. SHM observed in vitro closely resembles SHM observed in human antibodies in vivo in both mutation type and positioning in the antibody variable region. In addition, existing antibodies originating from mouse immunization, in vivo based libraries, or alternative display technologies such as phage can also be affinity matured in a similar manner. The display system has been developed to enable simultaneous high-level cell surface expression and secretion of the same protein through alternate splicing, where the displayed protein phenotype remains linked to genotype, allowing soluble secreted antibody to be simultaneously characterized in biophysical and cell-based functional assays. This approach overcomes many of the previous limitations of mammalian cell display, enabling direct selection and maturation of antibodies as full-length, glycosylated IgGs.


Assuntos
Anticorpos Monoclonais/genética , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos , Antígenos/imunologia , Sequência de Bases , Separação Celular , Primers do DNA/genética , Evolução Molecular Direcionada , Descoberta de Drogas , Citometria de Fluxo , Biblioteca Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Ligação Proteica , Engenharia de Proteínas
7.
Curr Drug Discov Technol ; 11(1): 56-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23978037

RESUMO

Human therapeutic antibody discovery has utilized a variety of systems, from in vivo immunization of human immunoglobulin-expressing mice, to in vitro display of antibody libraries. Of the in vitro antibody display technologies, mammalian cell display provides a number of advantages with the ability to co-select immunoglobulin molecules for high expression level in mammalian cells, native folding, and biophysical properties appropriate for drug development. Mammalian cell display has been achieved using either transient or stable expression systems, using a number of alternate transmembrane domains to present antibody on the cell surface. The unique capability of mammalian cells to present IgG in its fully post-translationally modified format also allows selection of antibodies for functional properties. One limitation of mammalian cell based systems, however, has been the smaller library size that can be presented compared to phage display approaches. Until recently, this has necessitated the use of libraries biased toward a particular antigen, such as libraries derived from immunized donors, to achieve success. An alternative approach has now been developed which recapitulates key aspects of the in vivo immune system through reproducing somatic hypermutation (SHM) in vitro. Libraries representing a naïve human B lymphocyte antibody repertoire are created by PCR amplification of the rearranged (D)J segments of heavy and light chain variable regions from human donors and incorporating the resulting sequence diversity into panels of human germline VH and VL genes. The resulting antibodies are presented as full length IgG on the surface of HEK293 cells. After isolation of antibodies binding to individual target antigens, subsequent affinity maturation using in vitro SHM is induced by expression of activation-induced cytidine deaminase (AID). Selection of antibodies from naïve fully human libraries using mammalian cell display coupled with in vitro SHM is an efficient methodology for the generation of high affinity human antibodies with excellent properties for drug development.


Assuntos
Anticorpos , Técnicas de Visualização da Superfície Celular , Hipermutação Somática de Imunoglobulina , Animais , Afinidade de Anticorpos , Citidina Desaminase , Humanos
8.
J Biol Chem ; 288(27): 19861-9, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23689374

RESUMO

A mammalian expression system has been developed that permits simultaneous cell surface display and secretion of the same protein through alternate splicing of pre-mRNA. This enables a flexible system for in vitro protein evolution in mammalian cells where the displayed protein phenotype remains linked to genotype, but with the advantage of soluble protein also being produced without the requirement for any further recloning to allow a wide range of assays, including biophysical and cell-based functional assays, to be used during the selection process. This system has been used for the simultaneous surface presentation and secretion of IgG during antibody discovery and maturation. Presentation and secretion of monomeric Fab can also be achieved to minimize avidity effects. Manipulation of the splice donor site sequence enables control of the relative amounts of cell surface and secreted antibody. Multi-domain proteins may be presented and secreted in different formats to enable flexibility in experimental design, and secreted proteins may be produced with epitope tags to facilitate high-throughput testing. This system is particularly useful in the context of in situ mutagenesis, as in the case of in vitro somatic hypermutation.


Assuntos
Processamento Alternativo , Anticorpos Monoclonais/biossíntese , Afinidade de Anticorpos/genética , Evolução Molecular Direcionada , Expressão Gênica , Imunoglobulina G/biossíntese , Anticorpos Monoclonais/genética , Células HEK293 , Humanos , Imunoglobulina G/genética , Precursores de RNA/biossíntese , Precursores de RNA/genética
9.
J Biol Chem ; 288(11): 7688-7696, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23355464

RESUMO

A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hßNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hßNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods.


Assuntos
Anticorpos/química , Regiões Determinantes de Complementaridade/metabolismo , Mutação , Animais , Anticorpos Monoclonais/química , Antígenos/química , Sequência de Bases , Ligação Competitiva , Separação Celular , Códon , Citocinas/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Engenharia de Proteínas/métodos , Transdução de Sinais
10.
Protein Eng Des Sel ; 26(2): 151-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23173178

RESUMO

Antibodies are important tools for a broad range of applications due to their high specificity and ability to recognize virtually any target molecule. However, in order to be practically useful, antibodies must be highly stable and bind their target antigens with high affinity. We present a combinatorial approach to generate high-affinity, highly stable antibodies through the design of stable frameworks, specificity grafting and maturation via somatic hypermutation in vitro. By collectively employing these methods, we have engineered a highly stable, high-affinity, full-length antibody with a T(m) over 90°C that retains significant activity after heating to 90°C for 1 h, and has ~95-fold improved antigen-binding affinity. The stabilized IgG framework is compatible with affinity maturation, and should provide a broadly useful scaffold for grafting a variety of complementarity-determining region loops for the development of stable antibodies with desired specificities.


Assuntos
Anticorpos de Cadeia Única/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Afinidade de Anticorpos , Especificidade de Anticorpos , Proteínas do Capsídeo/imunologia , Técnicas de Visualização da Superfície Celular , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Simulação por Computador , Cistina/química , Cistina/genética , Evolução Molecular Direcionada , Células HEK293 , Temperatura Alta , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Cinética , Levivirus/imunologia , Camundongos , Modelos Moleculares , Método de Monte Carlo , Mutagênese Sítio-Dirigida , Ligação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética , Temperatura de Transição
11.
PLoS One ; 7(11): e49458, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166676

RESUMO

A method has been developed for the rapid generation of high-affinity humanized antibodies from immunized animals without the need to make conventional hybridomas. Rearranged IgH D(J) regions were amplified from the spleen and lymph tissue of mice immunized with the human complement protein C5, fused with a limited repertoire of human germline heavy chain V-genes to form intact humanized heavy chains, and paired with a human light chain library. Completed heavy and light chains were assembled for mammalian cell surface display and transfected into HEK 293 cells co-expressing activation-induced cytidine deaminase (AID). Numerous clones were isolated by fluorescence-activated cell sorting, and affinity maturation, initiated by AID, resulted in the rapid evolution of high affinity, functional antibodies. This approach enables the efficient sampling of an immune repertoire and the direct selection and maturation of high-affinity, humanized IgGs.


Assuntos
Anticorpos Monoclonais Humanizados/biossíntese , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Proteínas Recombinantes/biossíntese , Hipermutação Somática de Imunoglobulina/imunologia , Animais , Complemento C5/imunologia , Citidina Desaminase/metabolismo , Descoberta de Drogas/métodos , Citometria de Fluxo , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Tecido Linfoide/imunologia , Camundongos , Hipermutação Somática de Imunoglobulina/genética , Baço/imunologia
12.
Proc Natl Acad Sci U S A ; 108(51): 20455-60, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22158898

RESUMO

A novel approach has been developed for the isolation and maturation of human antibodies that replicates key features of the adaptive immune system by coupling in vitro somatic hypermutation (SHM) with mammalian cell display. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID), and can be replicated in non-B cells through expression of recombinant AID. A library of human antibodies, based on germline V-gene segments with recombined human regions was used to isolate low-affinity antibodies to human ß nerve growth factor (hßNGF). These antibodies, initially naïve to SHM, were subjected to AID-directed SHM in vitro and selected using the same mammalian cell display system, as illustrated by the maturation of one of the antibodies to low pM K(D). This approach overcomes many of the previous limitations of mammalian cell display, enabling direct selection and maturation of antibodies as full-length, glycosylated IgGs.


Assuntos
Anticorpos/química , Membrana Celular/metabolismo , Mutação , Hipermutação Somática de Imunoglobulina , Sequência de Aminoácidos , Linfócitos B/imunologia , Citometria de Fluxo/métodos , Glicosilação , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina M/química , Cinética , Dados de Sequência Molecular , Fator de Crescimento Neural/química , Homologia de Sequência de Aminoácidos
13.
Structure ; 15(9): 1079-89, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17850747

RESUMO

In the study of protein complexes, is there a computational method for inferring which combinations of proteins in an organism are likely to form a crystallizable complex? Here we attempt to answer this question, using the Protein Data Bank (PDB) to assess the usefulness of inferred functional protein linkages from the Prolinks database. We find that of the 242 nonredundant prokaryotic protein complexes shared between the current PDB and Prolinks, 44% (107/242) contain proteins linked at high confidence by one or more methods of computed functional linkages. Similarly, high-confidence linkages detect 47% of known Escherichia coli protein complexes, with 45% accuracy. Together these findings suggest that functional linkages will be useful in defining protein complexes for structural studies, including for structural genomics. We offer a database of inferred linkages corresponding to likely protein complexes for some 629,952 pairs of proteins in 154 prokaryotes and archaea.


Assuntos
Conformação Proteica , Bases de Dados de Proteínas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares
14.
Sci Total Environ ; 385(1-3): 80-5, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17707466

RESUMO

The dog has been an important biomedical research model and hair samples from sled dogs could be used as a biomarker of exposure to metals. Hair samples were used as a non-invasive indicator of mercury exposure in sled dogs fed commercial food and traditional village diets. Sled dog populations living in rural New York and Alaska were sampled in 2005 and 2006. Total mercury (THg) content was determined on the entire hair sample in sled dogs from reference sites in North Creek, New York and Salcha Alaska. Both sites fed a commercial feed for high performance dogs and had mean THg levels of 36.6 ng/g for New York sled dogs while Alaskan sled dogs, occasionally supplemented with fish oil showed THg mean of 58.2 ng/g. These THg levels are below levels that are suggested to cause adverse effects and should be considered baseline levels. Yukon River sled dogs had higher THg, ranging from 139 to 15,800 ng/g and showed decreasing mean levels from the delta area to upriver. There were significant differences between THg in the dogs from Russian Mission (10,908.3+/-3028 ng/g), the farthest west village, and Ft. Yukon (1822.4+/-1747 ng/g), the farthest east village. All village dogs along the Yukon had higher THg levels than the THg mean level (657+/-273 ng/g) of hair from ancient dogs of the Seward Peninsula.


Assuntos
Cães/metabolismo , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Cabelo/química , Mercúrio/análise , Alaska , Ração Animal , Animais , Dieta , Poluentes Ambientais/farmacocinética , Humanos , Mercúrio/farmacocinética , New York , Rios , Espectrometria de Fluorescência
15.
J Mol Biol ; 365(2): 275-83, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17064730

RESUMO

Fatty acid biosynthesis is essential for the survival of Mycobacterium tuberculosis and acetyl-coenzyme A (acetyl-CoA) is an essential precursor in this pathway. We have determined the 3-D crystal structure of M. tuberculosis citrate lyase beta-subunit (CitE), which as annotated should cleave protein bound citryl-CoA to oxaloacetate and a protein-bound CoA derivative. The CitE structure has the (beta/alpha)(8) TIM barrel fold with an additional alpha-helix, and is trimeric. We have determined the ternary complex bound with oxaloacetate and magnesium, revealing some of the conserved residues involved in catalysis. While the bacterial citrate lyase is a complex with three subunits, the M. tuberculosis genome does not contain the alpha and gamma subunits of this complex, implying that M. tuberculosis CitE acts differently from other bacterial CitE proteins. The analysis of gene clusters containing the CitE protein from 168 fully sequenced organisms has led us to identify a grouping of functionally related genes preserved in M. tuberculosis, Rattus norvegicus, Homo sapiens, and Mus musculus. We propose a novel enzymatic function for M. tuberculosis CitE in fatty acid biosynthesis that is analogous to bacterial citrate lyase but producing acetyl-CoA rather than a protein-bound CoA derivative.


Assuntos
Genoma Bacteriano , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mycobacterium tuberculosis/enzimologia , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/genética , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional , Cristalização , Modelos Químicos , Dados de Sequência Molecular , Complexos Multienzimáticos/fisiologia , Óperon , Oxo-Ácido-Liases/fisiologia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
16.
Chemosphere ; 65(11): 1909-14, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16876850

RESUMO

Over the past ten years, total mercury (THg) levels have been surveyed in Alaskan wildlife and fish as part of the Arctic Monitoring and Assessment (AMAP). Beyond these studies there is little historical data on THg levels in important subsistence species for people in Alaska. A survey of THg in caribou hair from archaeological deposits would provide data to develop temporal trends for this region of the Arctic. Caribou hair from a Western Thule settlement beneath the Alaska native village of Deering (ca. AD 1150) show variability in hair THg values, with a mean level (86 ng/g) which is in the range that is observed in modern Rangifer sp. (caribou and reindeer). Hair from House 1 had a THg mean level of 99.6 ng/g and hair from House 2 had a THg mean of 64.2 ng/g. This is the earliest reported record of mercury in caribou associated with human subsistence activities in the western North American Arctic, and is a first step toward compilation of a needed database through which to measure and evaluate exposure to mercury by people who rely heavily on caribou as a food source. We hypothesize that similarity in mercury values in archaeological samples of caribou and in contemporary samples would give an additional perspective on human exposure to mercury through caribou harvest and consumption today. Since this hypothesis will be more useful if evaluated at a regional rather than global scale, further studies will be needed at different archaeological sites across Alaska to determine the generality of this observation in relation to geographic scale.


Assuntos
Cabelo/química , Mercúrio/análise , Alaska , Animais , Arqueologia , Rena
17.
FEBS J ; 272(20): 5110-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16218945

RESUMO

The wealth of available genomic data has spawned a corresponding interest in computational methods that can impart biological meaning and context to these experiments. Traditional computational methods have drawn relationships between pairs of proteins or genes based on notions of equality or similarity between their patterns of occurrence or behavior. For example, two genes displaying similar variation in expression, over a number of experiments, may be predicted to be functionally related. We have introduced a natural extension of these approaches, instead identifying logical relationships involving triplets of proteins. Triplets provide for various discrete kinds of logic relationships, leading to detailed inferences about biological associations. For instance, a protein C might be encoded within an organism if, and only if, two other proteins A and B are also both encoded within the organism, thus suggesting that gene C is functionally related to genes A and B. The method has been applied fruitfully to both phylogenetic and microarray expression data, and has been used to associate logical combinations of protein activity with disease state phenotypes, revealing previously unknown ternary relationships among proteins, and illustrating the inherent complexities that arise in biological data.


Assuntos
Fenômenos Fisiológicos Celulares , Biologia Computacional/métodos , Bases de Dados Genéticas , Algoritmos , Animais , Perfilação da Expressão Gênica , Glioma/genética , Humanos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas/genética , Proteínas/fisiologia
18.
Science ; 306(5705): 2246-9, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15618515

RESUMO

A major focus of genome research is to decipher the networks of molecular interactions that underlie cellular function. We describe a computational approach for identifying detailed relationships between proteins on the basis of genomic data. Logic analysis of phylogenetic profiles identifies triplets of proteins whose presence or absence obey certain logic relationships. For example, protein C may be present in a genome only if proteins A and B are both present. The method reveals many previously unidentified higher order relationships. These relationships illustrate the complexities that arise in cellular networks because of branching and alternate pathways, and they also facilitate assignment of cellular functions to uncharacterized proteins.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/fisiologia , Biologia Computacional , Genoma Bacteriano , Genoma , Mapeamento de Interação de Proteínas , Proteínas/análise , Proteínas/fisiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/química , Lógica , Movimento , Filogenia , Análise Serial de Proteínas , Proteínas/genética , Ácido Chiquímico/metabolismo , Virulência
19.
Genome Biol ; 5(5): R35, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15128449

RESUMO

The advent of whole-genome sequencing has led to methods that infer protein function and linkages. We have combined four such algorithms (phylogenetic profile, Rosetta Stone, gene neighbor and gene cluster) in a single database--Prolinks--that spans 83 organisms and includes 10 million high-confidence links. The Proteome Navigator tool allows users to browse predicted linkage networks interactively, providing accompanying annotation from public databases. The Prolinks database and the Proteome Navigator tool are available for use online at http://dip.doe-mbi.ucla.edu/pronav.


Assuntos
Bases de Dados de Proteínas , Evolução Molecular , Ligação Genética/genética , Proteínas/fisiologia , Complexos de ATP Sintetase/genética , Animais , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Benchmarking/métodos , Proteínas de Caenorhabditis elegans/genética , Quimiotaxia/fisiologia , Contraindicações , Proteínas de Drosophila/fisiologia , Lipopolissacarídeos/biossíntese , Filogenia , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA