Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(35): 7031-7046, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32786976

RESUMO

Thin films of pentaerythritol tetranitrate (PETN) were shock compressed using the laser driven shock apparatus at Los Alamos National Laboratory (LANL). Two spectroscopic probes were available to this apparatus: visible white light transient absorption spectroscopy (VIS) from 400 to 700 nm and mid-infrared transient absorption spectroscopy (MIR) from 1150 to 3800 cm-1. Important PETN vibrational modes are the symmetric and antisymmetric NO2 stretches at 1280 and 1650 cm-1, respectively, as well as CH stretches at ∼2900 cm-1. Shock strength was varied from approximately 3 to 55 GPa to span from the chemically unreactive regime to the regime in which fast chemical reaction took place on the 250 ps time scale of the measurements. VIS and MIR results suggest irreversible chemistry was induced in PETN at pressures above 30 GPa. At lower shock pressures, the spectroscopy showed minimal changes attributable to pressure induced effects. Under the higher-pressure reactive conditions, the frequency region at the antisymmetric NO2 stretch mode had a significantly increased absorption while the region around the symmetric NO2 stretch did not. No observable increased absorption occurred in the higher frequency regions where CH-, NH-, and OH- bond absorptions would be observed. A broad absorption appeared on the shoulder at the red-edge of the CO2 vibrational band around 2200 cm-1. In addition to the experiments, reactive molecular dynamics were carried out under equivalent shock conditions to correlate the evolution of the infrared spectrum to molecular processes. The simulations show results consistent to experiments up to 30 GPa but suggest that NO and NO2 related features provided the strongest contributions to the shocked infrared changes. Proposed mechanisms for shocked PETN chemistry are analyzed as consistent or inconsistent with the data presented here. Our experimental data suggests C≡O or N2O bond formation, nitrite formation, and absence of significant hydroxyl or amine concentrations in the initial chemistry steps in PETN shocked above 30 GPa.

2.
Rev Sci Instrum ; 90(6): 063001, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31254979

RESUMO

Common Ti:sapphire chirped pulse amplified laser systems can be readily adapted to be both a generator of adjustable pressure shock waves and a source for multiple probes of the ensuing ultrafast shock dynamics. In this paper, we detail experimental considerations for optimizing the shock generation, interferometric characterization, and spectroscopic probing of shock dynamics with visible and mid-infrared transient absorption. While we have reported results using these techniques elsewhere, here we detail how the spectroscopies are integrated with the shock and interferometry experiment. The interferometric characterization uses information from beams at multiple polarizations and angles of incidence combined with thin film equations and shock dynamics to determine the shock velocity, particle velocity, and shocked refractive index. Visible transient absorption spectroscopy uses a white light supercontinuum in a reflection geometry, synchronized to the shock wave, to time resolve shock-induced changes in visible absorption such as changes to electronic structure or strongly absorbing products and intermediates due to reaction. Mid-infrared transient absorption spectroscopy uses two color filamentation supercontinuum generation combined with a simple thermal imaging microbolometer spectrometer to enable broadband single shot detection of changes in the vibrational spectra. These methods are demonstrated here in the study of shock dynamics at stresses from 5 to 30 GPa in organic materials and from a few GPa to >70 GPa in metals with spatial resolution of a few micrometers and temporal resolution of a few picoseconds. This experiment would be possible to replicate in any ultrafast laser laboratory containing a single bench top commercial chirped pulse amplification laser system.

3.
J Chem Phys ; 150(24): 244108, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255087

RESUMO

The study of the long-term evolution of slow chemical reactions is challenging because quantum-based reactive molecular dynamics simulation times are typically limited to hundreds of picoseconds. Here, the extended Lagrangian Born-Oppenheimer molecular dynamics formalism is used in conjunction with parallel replica dynamics to obtain an accurate tool to describe the long-term chemical dynamics of shock-compressed benzene. Langevin dynamics has been employed at different temperatures to calculate the first reaction times in liquid benzene at pressures and temperatures consistent with its unreacted Hugoniot. Our coupled engine runs for times on the order of nanoseconds (one to two orders of magnitude longer than traditional techniques) and is capable of detecting reactions that are characterized by rates significantly slower than we could study before. At lower pressures and temperatures, we mainly observe Diels-Alder metastable reactions, whereas at higher pressures and temperatures we observe stable polymerization reactions.

4.
Phys Rev Lett ; 122(19): 197401, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144919

RESUMO

We investigate polarization-dependent ultrafast photocurrents in the Weyl semimetal TaAs using terahertz (THz) emission spectroscopy. Our results reveal that highly directional, transient photocurrents are generated along the noncentrosymmetric c axis regardless of incident light polarization, while helicity-dependent photocurrents are excited within the ab plane. This is consistent with earlier static photocurrent experiments, and demonstrates on the basis of both the physical constraints imposed by symmetry and the temporal dynamics intrinsic to current generation and decay that optically induced photocurrents in TaAs are inherent to the underlying crystal symmetry of the transition metal monopnictide family of Weyl semimetals.

5.
J Chem Phys ; 150(6): 064705, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769966

RESUMO

The solid, secondary explosive nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7 or HMX has four different stable polymorphs which have different molecular conformations, crystalline structures, and densities, making structural phase transitions between these nontrivial. Previous studies of the kinetics of the ß-δ HMX structural transition found this to happen by a nucleation and growth mechanism, where growth was governed by the heat of fusion, or melting, even though the phase transition temperature is more than 100 K below the melting point. A theory known as virtual melting could easily justify this since the large volume difference in the two phases creates a strain at their interface that can lower the melting point to the phase transition temperature through a relaxation of the elastic energy. To learn more about structural phase transitions in organic crystalline solids and virtual melting, here we use time-resolved X-ray diffraction to study another structural phase transition in HMX, γ-δ. Again, second order kinetics are observed which fit to the same nucleation and growth model associated with growth by melting even though the volume change in this transition is too small to lower the melting point by interfacial strain. To account for this, we present a more general model illustrating that melting over a very thin layer at the interface between the two phases reduces the total interfacial energy and is therefore thermodynamically favorable and can drive the structural phase transition in the absence of large volume changes. Our work supports the idea that virtual melting may be a more generally applicable mechanism for structural phase transitions in organic crystalline solids.

6.
Opt Lett ; 37(7): 1238-40, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466207

RESUMO

The complete spatiotemporal characterization of the diffracted field of ultrashort pulses after passing through circularly symmetric binary phase diffraction gratings is carried out. The complex field is registered at different planes behind the gratings with an ultrashort-pulse measurement technique called SEA TADPOLE. Numerical simulations based on scalar diffraction theory are compared with the measurements.

7.
Phys Rev Lett ; 107(25): 256602, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22243098

RESUMO

The time evolution of high-field carrier transport in bulk GaAs is studied with intense femtosecond THz pulses. While ballistic transport of electrons occurs in an n-type sample, a transition from ballistic to driftlike motion is observed in an electron-hole plasma. This onset of friction is due to the holes, which are heated by THz absorption. Theoretical calculations, which reproduce the data quantitatively, show that both electron-hole scattering and local-field effects in the electron-hole plasma are essential for the time-dependent friction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA