Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(35): 7031-7046, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32786976

RESUMO

Thin films of pentaerythritol tetranitrate (PETN) were shock compressed using the laser driven shock apparatus at Los Alamos National Laboratory (LANL). Two spectroscopic probes were available to this apparatus: visible white light transient absorption spectroscopy (VIS) from 400 to 700 nm and mid-infrared transient absorption spectroscopy (MIR) from 1150 to 3800 cm-1. Important PETN vibrational modes are the symmetric and antisymmetric NO2 stretches at 1280 and 1650 cm-1, respectively, as well as CH stretches at ∼2900 cm-1. Shock strength was varied from approximately 3 to 55 GPa to span from the chemically unreactive regime to the regime in which fast chemical reaction took place on the 250 ps time scale of the measurements. VIS and MIR results suggest irreversible chemistry was induced in PETN at pressures above 30 GPa. At lower shock pressures, the spectroscopy showed minimal changes attributable to pressure induced effects. Under the higher-pressure reactive conditions, the frequency region at the antisymmetric NO2 stretch mode had a significantly increased absorption while the region around the symmetric NO2 stretch did not. No observable increased absorption occurred in the higher frequency regions where CH-, NH-, and OH- bond absorptions would be observed. A broad absorption appeared on the shoulder at the red-edge of the CO2 vibrational band around 2200 cm-1. In addition to the experiments, reactive molecular dynamics were carried out under equivalent shock conditions to correlate the evolution of the infrared spectrum to molecular processes. The simulations show results consistent to experiments up to 30 GPa but suggest that NO and NO2 related features provided the strongest contributions to the shocked infrared changes. Proposed mechanisms for shocked PETN chemistry are analyzed as consistent or inconsistent with the data presented here. Our experimental data suggests C≡O or N2O bond formation, nitrite formation, and absence of significant hydroxyl or amine concentrations in the initial chemistry steps in PETN shocked above 30 GPa.

2.
Rev Sci Instrum ; 90(6): 063001, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31254979

RESUMO

Common Ti:sapphire chirped pulse amplified laser systems can be readily adapted to be both a generator of adjustable pressure shock waves and a source for multiple probes of the ensuing ultrafast shock dynamics. In this paper, we detail experimental considerations for optimizing the shock generation, interferometric characterization, and spectroscopic probing of shock dynamics with visible and mid-infrared transient absorption. While we have reported results using these techniques elsewhere, here we detail how the spectroscopies are integrated with the shock and interferometry experiment. The interferometric characterization uses information from beams at multiple polarizations and angles of incidence combined with thin film equations and shock dynamics to determine the shock velocity, particle velocity, and shocked refractive index. Visible transient absorption spectroscopy uses a white light supercontinuum in a reflection geometry, synchronized to the shock wave, to time resolve shock-induced changes in visible absorption such as changes to electronic structure or strongly absorbing products and intermediates due to reaction. Mid-infrared transient absorption spectroscopy uses two color filamentation supercontinuum generation combined with a simple thermal imaging microbolometer spectrometer to enable broadband single shot detection of changes in the vibrational spectra. These methods are demonstrated here in the study of shock dynamics at stresses from 5 to 30 GPa in organic materials and from a few GPa to >70 GPa in metals with spatial resolution of a few micrometers and temporal resolution of a few picoseconds. This experiment would be possible to replicate in any ultrafast laser laboratory containing a single bench top commercial chirped pulse amplification laser system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA