RESUMO
Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.
Assuntos
Autofagia , Evolução Biológica , Autofagia/fisiologia , Clorófitas/fisiologia , Clorófitas/metabolismoRESUMO
Vitamin B12, also known as cobalamin, is an essential organic cofactor for methionine synthase (METH), and is only synthesized by a subset of bacteria. Plants and fungi have an alternative methionine synthase (METE) that does not need B12 and are typically considered not to utilize it. Some algae facultatively utilize B12 because they encode both METE and METH, while other algae are dependent on B12 as they encode METH only. We performed phylogenomic analyses of METE, METH and 11 further proteins involved in B12 metabolism across more than 1600 plant and algal genomes and transcriptomes (e.g. from OneKp), demonstrating the presence of B12-associated metabolism deep into the streptophytes. METH and five further accessory proteins (MTRR, CblB, CblC, CblD and CblJ) were detected in the hornworts (Anthocerotophyta), and two (CblB and CblJ) were identified in liverworts (Marchantiophyta) in the bryophytes, suggesting a retention of B12-metabolism in the last common land plant ancestor. Our data further show more limited distributions for other B12-related proteins (MCM and RNR-II) and B12 dependency in several algal orders. Finally, considering the collection sites of algae that have lost B12 metabolism, we propose freshwater-to-land transitions and symbiotic associations to have been constraining factors for B12 availability in early plant evolution. This article is part of the theme issue 'The evolution of plant metabolism'.
Assuntos
Embriófitas , Vitamina B 12 , Vitamina B 12/metabolismo , Embriófitas/genética , Embriófitas/metabolismo , Filogenia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Evolução Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Evolução BiológicaRESUMO
Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.
Assuntos
Calcificação Fisiológica , Calcificação Fisiológica/genética , Clorófitas/genética , Clorófitas/metabolismo , Filogenia , Genoma de Planta , Fotossíntese/genéticaRESUMO
Our oceans are populated with a wide diversity of planktonic organisms that form complex dynamic communities at the base of marine trophic networks. Within such communities are phytoplankton, unicellular photosynthetic taxa that provide an estimated half of global primary production and support biogeochemical cycles, along with other essential ecosystem services. One of the major challenges for microbial ecologists has been to try to make sense of this complexity. While phytoplankton distributions can be well explained by abiotic factors such as temperature and nutrient availability, there is increasing evidence that their ecological roles are tightly linked to their metabolic interactions with other plankton members through complex mechanisms (e.g. competition and symbiosis). Therefore, unravelling phytoplankton metabolic interactions is the key for inferring their dependency on, or antagonism with, other taxa and better integrating them into the context of carbon and nutrient fluxes in marine trophic networks. In this review, we attempt to summarize the current knowledge brought by ecophysiology, organismal imaging, in silico predictions and co-occurrence networks using 'omics data, highlighting successful combinations of approaches that may be helpful for future investigations of phytoplankton metabolic interactions within their complex communities.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Assuntos
Cadeia Alimentar , Fitoplâncton , Fitoplâncton/metabolismo , Fitoplâncton/fisiologia , EcossistemaRESUMO
Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.
Assuntos
Diatomáceas , Gluconeogênese , Glicólise , Plastídeos , Diatomáceas/metabolismo , Diatomáceas/genética , Plastídeos/metabolismo , Plastídeos/genética , Glicólise/genética , Gluconeogênese/genética , FilogeniaRESUMO
Marine microorganisms form complex communities of interacting organisms that influence central ecosystem functions in the ocean such as primary production and nutrient cycling. Identifying the mechanisms controlling their assembly and activities is a major challenge in microbial ecology. Here, we integrated Tara Oceans meta-omics data to predict genome-scale community interactions within prokaryotic assemblages in the euphotic ocean. A global genome-resolved co-activity network revealed a significant number of inter-lineage associations across diverse phylogenetic distances. Identified co-active communities include species displaying smaller genomes but encoding a higher potential for quorum sensing, biofilm formation, and secondary metabolism. Community metabolic modelling reveals a higher potential for interaction within co-active communities and points towards conserved metabolic cross-feedings, in particular of specific amino acids and group B vitamins. Our integrated ecological and metabolic modelling approach suggests that genome streamlining and metabolic auxotrophies may act as joint mechanisms shaping bacterioplankton community assembly in the global ocean surface.
Assuntos
Bactérias , Ecossistema , Filogenia , Bactérias/genética , Organismos Aquáticos/genética , Oceanos e MaresRESUMO
Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.
Assuntos
Dinoflagellida , Dinoflagellida/genética , Dinoflagellida/metabolismo , Simbiose/genética , Filogenia , Proteoma/genética , Proteoma/metabolismo , Plastídeos/genéticaRESUMO
Diatoms, the main eukaryotic phytoplankton of the polar marine regions, are essential for the maintenance of food chains specific to Arctic and Antarctic ecosystems, and are experiencing major disturbances under current climate change. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of their endurance during the long polar night. Here, using the polar diatom Fragilariopsis cylindrus, we report an integrative analysis combining transcriptomic, microscopic and biochemical approaches to shed light on the strategies used to survive the polar night. We reveal that in prolonged darkness, diatom cells enter a state of quiescence with reduced metabolic and transcriptional activity, during which no cell division occurs. We propose that minimal energy is provided by respiration and degradation of protein, carbohydrate and lipid stores and that homeostasis is maintained by autophagy in prolonged darkness. We also report internal structural changes that manifest the morphological acclimation of cells to darkness, including the appearance of a large vacuole. Our results further show that immediately following a return to light, diatom cells are able to use photoprotective mechanisms and rapidly resume photosynthesis, demonstrating the remarkable robustness of polar diatoms to prolonged darkness at low temperature.
Assuntos
Diatomáceas , Diatomáceas/metabolismo , Ecossistema , Fitoplâncton , Fotossíntese/fisiologia , Temperatura BaixaRESUMO
Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic-subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.
RESUMO
Traditional culture techniques usually retrieve a small fraction of the marine microbial diversity, which mainly belong to the so-called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we examined the fraction of heterotrophic bacterial communities in photic and deep ocean layers that could be recovered by culture-dependent techniques at a large scale. We compared 16S rRNA gene sequences from a collection of 2003 cultured heterotrophic marine bacteria with global 16S rRNA metabarcoding datasets (16S TAGs) covering surface, mesopelagic and bathypelagic ocean samples that included 16 of the 23 samples used for isolation. These global datasets represent 60 322 unique 16S amplicon sequence variants (ASVs). Our results reveal a significantly higher proportion of isolates identical to ASVs in deeper ocean layers reaching up to 28% of the 16S TAGs of the bathypelagic microbial communities, which included the isolation of 3 of the top 10 most abundant 16S ASVs in the global bathypelagic ocean, related to the genera Sulfitobacter, Halomonas and Erythrobacter. These isolates contributed differently to the prokaryotic communities across different plankton size fractions, recruiting between 38% in the free-living fraction (0.2-0.8 µm) and up to 45% in the largest particles (20-200 µm) in the bathypelagic ocean. Our findings support the hypothesis that sinking particles in the bathypelagic act as resource-rich habitats, suitable for the growth of heterotrophic bacteria with a copiotroph lifestyle that can be cultured, and that these cultivable bacteria can also thrive as free-living bacteria.
RESUMO
For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean. Here, we conducted comparative analyses of trans-kingdom community assemblages thriving in the mesopelagic oxygen minimum zone (OMZ), mesopelagic oxic, and their epipelagic counterparts. We identified nine distinct types of intermediate water masses that correlate with variation in mesopelagic community composition. Furthermore, oxygen, NO3- and particle flux together appeared as the main drivers governing these communities. Novel taxonomic signatures emerged from OMZ while a global co-occurrence network analysis showed that about 70% of the abundance of mesopelagic plankton groups is organized into three community modules. One module gathers prokaryotes, pico-eukaryotes and Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from oxic regions, and the two other modules are enriched in OMZ prokaryotes and OMZ pico-eukaryotes, respectively. We hypothesize that OMZ conditions led to a diversification of ecological niches, and thus communities, due to selective pressure from limited resources. Our study further clarifies the interplay between environmental factors in the mesopelagic oxic and OMZ, and the compositional features of communities.
RESUMO
While the pivotal role of linker histone H1 in shaping nucleosome organization is well established, its functional interplays with chromatin factors along the epigenome are just starting to emerge. Here we show that, in Arabidopsis, as in mammals, H1 occupies Polycomb Repressive Complex 2 (PRC2) target genes where it favors chromatin condensation and H3K27me3 deposition. We further show that, contrasting with its conserved function in PRC2 activation at genes, H1 selectively prevents H3K27me3 accumulation at telomeres and large pericentromeric interstitial telomeric repeat (ITR) domains by restricting DNA accessibility to Telomere Repeat Binding (TRB) proteins, a group of H1-related Myb factors mediating PRC2 cis recruitment. This study provides a mechanistic framework by which H1 avoids the formation of gigantic H3K27me3-rich domains at telomeric sequences and contributes to safeguard nucleus architecture.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Mamíferos/metabolismoRESUMO
With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.
Assuntos
Antozoários , Calcinose , Animais , Antozoários/fisiologia , Recifes de Corais , Regulação para Cima , Concentração de Íons de Hidrogênio , Carbonatos/metabolismo , Carbonato de Cálcio/metabolismo , Calcificação Fisiológica/fisiologia , Água do MarRESUMO
Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.
Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Temperatura , Estações do Ano , DNA/genéticaRESUMO
Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.
Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Oceano Pacífico , Biodiversidade , Peixes , PlânctonRESUMO
Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.
Assuntos
Antozoários , Gammaproteobacteria , Animais , Antozoários/microbiologia , Oceano Pacífico , Ecologia , Bactérias , Recifes de CoraisRESUMO
The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean and the ocean surface waters at 249 locations, resulting in the collection of nearly 58 000 samples. The expedition was designed to systematically study warm-water coral reefs and included the collection of corals, fish, plankton, and seawater samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide a complete description of the sampling methodology, and we explain how to explore and access the different datasets generated by the expedition. Environmental context data were obtained from taxonomic registries, gazetteers, almanacs, climatologies, operational biogeochemical models, and satellite observations. The quality of the different environmental measures has been validated not only by various quality control steps, but also through a global analysis allowing the comparison with known environmental large-scale structures. Such publicly released datasets open the perspective to address a wide range of scientific questions.
Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Oceano Pacífico , Água do MarRESUMO
Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.
Assuntos
Antozoários , Transcriptoma , Animais , Oceano Pacífico , Transcriptoma/genética , Antozoários/genética , Aclimatação/genética , Recifes de CoraisRESUMO
Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.
Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , EcossistemaRESUMO
Oceanic phytoplankton serve as a base for the food webs within the largest planetary ecosystem. Despite this, surprisingly little is known about species composition, function and ecology of phytoplankton communities, especially for vast areas of the open ocean. In this study we focus on the marine phytoplankton microflora from the vicinity of the Marquesas Islands in the Southern Pacific Ocean collected during the Tara Oceans expedition. Multiple samples from four sites and two depths were studied in detail using light microscopy, scanning electron microscopy, and automated confocal laser scanning microscopy. In total 289 taxa were identified, with Dinophyceae and Bacillariophyceae contributing 60% and 32% of taxa, respectively, to phytoplankton community composition. Notwithstanding, a large number of cells could not be assigned to any known species. Coccolithophores and other flagellates together contributed less than 8% to the species list. Observed cell densities were generally low, but at sites of high autotrophic biomass, diatoms reached the highest cell densities (1.26 × 104 cells L-1). Overall, 18S rRNA metabarcode-based community compositions matched microscopy-based estimates, particularly for the main diatom taxa, indicating consistency and complementarity between different methods, while the wide range of microscopy-based methods permitted several unknown and poorly studied taxa to be revealed and identified.