Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 157: 41-51, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26998569

RESUMO

The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from releases from a nuclear explosion.


Assuntos
Poluentes Radioativos do Ar/análise , Modelos Teóricos , Liberação Nociva de Radioativos , Compostos Radiofarmacêuticos , Radioisótopos de Xenônio/análise , Explosões , Monitoramento de Radiação
2.
J Environ Radioact ; 148: 123-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26151301

RESUMO

The radionuclide network of the International Monitoring System comprises up to 80 stations around the world that have aerosol and xenon monitoring systems designed to detect releases of radioactive materials to the atmosphere from nuclear explosions. A rule of thumb description of plume concentration and duration versus time and distance from the release point is useful when designing and deploying new sample collection systems. This paper uses plume development from atmospheric transport modeling to provide a power-law rule describing atmospheric dilution factors as a function of distance from the release point. Consider the plume center-line concentration seen by a ground-level sampler as a function of time based on a short-duration ground-level release of a nondepositing radioactive tracer. The concentration C (Bq m(-3)) near the ground varies with distance from the source with the relationship C=R×A(D,C) ×e (-λ(-1.552+0.0405×D)) × 5.37×10(-8) × D(-2.35) where R is the release magnitude (Bq), D is the separation distance (km) from the ground level release to the measurement location, λ is the decay constant (h(-1)) for the radionuclide of interest and AD,C is an attenuation factor that depends on the length of the sample collection period. This relationship is based on the median concentration for 10 release locations with different geographic characteristics and 365 days of releases at each location, and it has an R(2) of 0.99 for 32 distances from 100 to 3000 km. In addition, 90 percent of the modeled plumes fall within approximately one order of magnitude of this curve for all distances.


Assuntos
Movimentos do Ar , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Cinza Radioativa/análise , Radioisótopos de Xenônio/análise , Aerossóis/análise , Atmosfera , Explosões , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA