Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
2.
Integr Environ Assess Manag ; 20(2): 433-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044542

RESUMO

The environmental management cycles for chemicals and climate change (EMC4 ) is a suggested conceptual framework for integrating climate change aspects into chemical risk management. The interaction of climate change and chemical risk brings together complex systems that are imperfectly understood by science. Making management decisions in this context is therefore difficult and often exacerbated by a lack of data. The consequences of poor decision-making can be significant for both environmental and human health. This article reflects on the ways in which existing chemicals management systems consider climate change and proposes the EMC4 conceptual framework, which is a tool for decision-makers operating at different spatial scales. Also presented are key questions raised by the tool to help the decision-maker identify chemical risks from climate change, management options, and, importantly, the different types of actors that are instrumental in managing that risk. Case studies showing decision-making at different spatial scales are also presented highlighting the conceptual framework's applicability to multiple scales. The United Nations Environment Programme's development of an intergovernmental Science Policy Panel on Chemicals and Waste has presented an opportunity to promote and generate research highlighting the impacts of chemicals and climate change interlinkages. Integr Environ Assess Manag 2024;20:433-453. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Humanos , Medição de Risco , Gestão de Riscos , Ecotoxicologia
3.
Integr Environ Assess Manag ; 20(2): 359-366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124219

RESUMO

The impacts of global climate change are not yet well integrated with the estimates of the impacts of chemicals on the environment. This is evidenced by the lack of consideration in national or international reports that evaluate the impacts of climate change and chemicals on ecosystems and the relatively few peer-reviewed publications that have focused on this interaction. In response, a 2011 Pellston Workshop® was held on this issue and resulted in seven publications in Environmental Toxicology and Chemistry. Yet, these publications did not move the field toward climate change and chemicals as important factors together in research or policy-making. Here, we summarize the outcomes of a second Pellston Workshop® on this topic held in 2022 that included climate scientists, environmental toxicologists, chemists, and ecological risk assessors from 14 countries and various sectors. Participants were charged with assessing where climate models can be applied to evaluating potential exposure and ecological effects at geographical and temporal scales suitable for ecological risk assessment, and thereby be incorporated into adaptive risk management strategies. We highlight results from the workshop's five publications included in the special series "Incorporating Global Climate Change into Ecological Risk Assessments: Strategies, Methods and Examples." We end this summary with the overall conclusions and recommendations from participants. Integr Environ Assess Manag 2024;20:359-366. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Poluentes Ambientais , Humanos , Poluentes Ambientais/análise , Ecossistema , Modelos Climáticos , Mudança Climática , Ecotoxicologia , Medição de Risco/métodos , Gestão de Riscos
4.
Environ Toxicol Chem ; 42(10): 2091-2104, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37341550

RESUMO

Studies on the uptake of pharmaceuticals from soils into crops were first conducted in the 2000s. Since then a wealth of such data has been generated, but to the best of our knowledge, these studies have not been systematically reviewed. We present a quantitative, systematic review of empirical data on the uptake of pharmaceuticals into crops. We developed a custom-made relational database on plant uptake of pharmaceuticals that contained details of the experimental design and associated results from 150 articles, spanning 173 pharmaceuticals, 78 study crops, and 8048 unique measurements. Analysis of the data in the database showed clear trends in experimental design, with lettuce being the most studied crop and carbamazepine and sulfamethoxazole being the most studied pharmaceuticals. Pharmaceutical properties were found to create the greatest range in uptake concentrations of any single variable studied. Uptake concentrations were also found to vary between crops, with relatively high uptake concentrations identified in cress, lettuce, rice, and courgette crops. An understanding of the influence of soil properties on pharmaceutical uptake was limited by a lack of information on key soil properties across the published literature. The data comparisons were inhibited by differences in quality of the different studies. Moving forward, a framework for best practice in this field is needed to maximize the value and further applications of the data produced. Environ Toxicol Chem 2023;42:2091-2104. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Poluentes do Solo , Poluentes do Solo/análise , Produtos Agrícolas , Solo/química , Lactuca , Preparações Farmacêuticas
5.
Environ Toxicol Chem ; 41(12): 3058-3069, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36200670

RESUMO

Plastic litter is now pervasive in the aquatic environment. Several marine and terrestrial organisms can fragment plastic with their feeding appendages, facilitating its breakdown and generating microplastics. However, similar studies with freshwater organisms are extremely limited. We explored the interactions between the caddisfly larvae Agrypnia sp. and polylactic acid (PLA) film. The use of plastic by larvae to build their protective cases was investigated, along with their ability to fragment the plastic film as they do with leaf litter. Caddisfly consistently incorporated PLA into their cases alongside leaf material. They also used their feeding appendages to rapidly fragment PLA-forming hundreds of submillimeter-sized microplastics. Although larvae showed a preference for leaf material when constructing cases, plastic use and fragmentation still occurred when leaf material was replete, indicating that this behavior is likely to occur in natural environments that are polluted with plastics. This is thought to be the first documented evidence of active plastic modification by a freshwater invertebrate and therefore reveals a previously unidentified mechanism of plastic fragmentation and microplastic formation in freshwater. Further work is now needed to determine the extent of this behavior across freshwater taxa and the potential implications for the wider ecosystem. Environ Toxicol Chem 2022;41:3058-3069. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Ecossistema , Larva , Insetos , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água Doce , Poliésteres
6.
Environ Toxicol Chem ; 41(8): 2008-2020, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35730333

RESUMO

During their production, use, and disposal, active pharmaceutical ingredients (APIs) are released into aquatic systems. Because they are biologically active molecules, APIs have the potential to adversely affect nontarget organisms. We used the results of a global monitoring study of 61 APIs alongside available ecotoxicological and pharmacological data to assess the potential ecotoxicological effects of APIs in rivers across the world. Approximately 43.5% (461 sites) of the 1052 sampling locations monitored across 104 countries in a recent global study had concentrations of APIs of concern based on apical, nonapical, and mode of action-related endpoints. Approximately 34.1% of the 137 sampling campaigns had at least one location where concentrations were of ecotoxicological concern. Twenty-three APIs occurred at concentrations exceeding "safe" concentrations, including substances from the antidepressant, antimicrobial, antihistamine, ß-blocker, anticonvulsant, antihyperglycemic, antimalarial, antifungal, calcium channel blocker, benzodiazepine, painkiller, progestin, and lifestyle compound classes. At the most polluted sites, effects are predicted on different trophic levels and on different endpoint types. Overall, the results show that API pollution is a global problem that is likely negatively affecting the health of the world's rivers. To meet the United Nations' Sustainable Development Goals, work is urgently needed to tackle the problem and bring concentrations down to an acceptable level. Environ Toxicol Chem 2022;41:2008-2020. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Poluentes Químicos da Água , Monitoramento Ambiental , Preparações Farmacêuticas , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Sci Total Environ ; 840: 156478, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35667426

RESUMO

European agricultural development in the 21st century will be affected by a host of global changes, including climate change, changes in agricultural technologies and practices, and a shift towards a circular economy. The type and quantity of chemicals used, emitted, and cycled through agricultural systems in Europe will change, driven by shifts in the use patterns of pesticides, veterinary pharmaceuticals, reclaimed wastewater used for irrigation, and biosolids. Climate change will also impact the chemical persistence, fate, and transport processes that dictate environmental exposure. Here, we review the literature to identify research that will enable scenario-based forecasting of environmental exposures to organic chemicals in European agriculture under global change. Enabling exposure forecasts requires understanding current and possible future 1.) emissions, 2.) persistence and transformation, and 3.) fate and transport of agricultural chemicals. We discuss current knowledge in these three areas, the impact global change drivers may have on them, and we identify knowledge and data gaps that must be overcome to enable predictive scenario-based forecasts of environmental exposure under global change. Key research gaps identified are: improved understanding of relationships between global change and chemical emissions in agricultural settings; better understanding of environment-microbe interactions in the context of chemical degradation under future conditions; and better methods for downscaling climate change-driven intense precipitation events for chemical fate and transport modelling. We introduce a set of narrative Agricultural Chemical Exposure (ACE) scenarios - augmenting the IPCC's Shared Socio-economic Pathways (SSPs) - as a framework for forecasting chemical exposure in European agriculture. The proposed ACE scenarios cover a plausible range of optimistic to pessimistic 21st century development pathways. Filling the knowledge and data gaps identified within this study and using the ACE scenario approach for chemical exposure forecasting will support stakeholder planning and regulatory intervention strategies to ensure European agricultural practices develop in a sustainable manner.


Assuntos
Agroquímicos , Exposição Ambiental , Drogas Veterinárias , Agricultura/economia , Agricultura/métodos , Agricultura/tendências , Mudança Climática , Previsões , Modelos Teóricos
8.
Environ Sci Eur ; 34(1): 21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281760

RESUMO

The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.

9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165193

RESUMO

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.


Assuntos
Rios/química , Poluição Química da Água/análise , Poluição Química da Água/prevenção & controle , Ecossistema , Exposição Ambiental , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Águas Residuárias/análise , Águas Residuárias/química , Água/análise , Água/química , Poluentes Químicos da Água/análise
10.
Bull Environ Contam Toxicol ; 108(4): 609-615, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34993567

RESUMO

There is increasing evidence that microbial biofilms which form on the surface of marine plastics can increase plastics palatability, making it more attractive to organisms. The same information, however, does not exist for freshwater systems. This study observed the response of the freshwater amphipod Gammarus pulex when exposed to 3 cm-diameter discs of biofilm-covered plastic, both alone and when presented alongside its natural food. G. pulex did not fragment or consume the plastic materials, and the presence of colonised plastic in the immediate environment did not alter the amount of time organisms spent interacting with their natural food. This study provides baseline information for virgin and microbially colonised low-density polyethylene and polylactic acid film. Further studies, with other types of plastic possessing different physical properties and with different microbial biofilm compositions are now required to build further understanding of interactions between plastic, microbial biofilms, and freshwater shredding invertebrates.


Assuntos
Anfípodes , Plásticos , Animais , Biofilmes , Água Doce , Polietileno
11.
Sci Total Environ ; 788: 147827, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134354

RESUMO

As the environmental risks of companion animal pharmaceuticals has been assumed to be low, currently, no data on the fate, behaviour or effect is required by the European Medicines Agency. This is in sharp contrast with what happens in farming animals, where ecotoxicological data is a pivotal part on the benefit-risk assessment for the marketing authorization of a new veterinary drug. Recently, concern about the environmental impacts from the indiscriminate prophylactic use of antiparasitic drugs in pets has arisen. Considering the notable increase of companion animals in Europe since 2010, our impression is that, effects and potential deleterious consequences of other therapeutic classes such as antimicrobials and psychotropic drugs are probably underrated. We believe that pets, as animals, should not be excluded from One Health's philosophy, and that authorities should incorporate environmental aspects in the benefit-risk assessment for drugs used in companion animals as well.


Assuntos
Poluição Ambiental , Drogas Veterinárias , Animais , Ecotoxicologia , Europa (Continente) , Medição de Risco
12.
J Hazard Mater ; 415: 125688, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088186

RESUMO

Information on the sorption of active pharmaceutical ingredients (APIs) in soils and sediments is needed for assessing the environmental risks of these substances yet these data are unavailable for many APIs in use. Predictive models for estimating sorption could provide a solution. The performance of existing models is, however, often poor and most models do not account for the effects of soil/sediment properties which are known to significantly affect API sorption. Therefore, here, we use a high-quality dataset on the sorption behavior of 54 APIs in 13 soils and sediments to develop new models for estimating sorption coefficients for APIs in soils and sediments using three machine learning approaches (artificial neural network, random forest and support vector machine) and linear regression. A random forest-based model, with chemical and solid descriptors as the input, was the best performing model. Evaluation of this model using an independent sorption dataset from the literature showed that the model was able to predict sorption coefficients of 90% of the test set to within a factor of 10 of the experimental values. This new model could be invaluable in assessing the sorption behavior of molecules that have yet to be tested and in landscape-level risk assessments.


Assuntos
Preparações Farmacêuticas , Poluentes do Solo , Adsorção , Sedimentos Geológicos , Solo , Poluentes do Solo/análise
13.
Open Res Eur ; 1: 154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645192

RESUMO

By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals. ECORISK2050 is a Marie Sklodowska-Curie Innovative Training Network that brings together an interdisciplinary consortium of academic, industry and governmental partners to deliver a new generation of scientists, with the skills required to study and manage the effects of GCs on chemical risks to the aquatic environment. The research and training goals are to: (1) assess how inputs and behaviour of chemicals from agriculture and urban environments are affected by different environmental conditions, and how different GC scenarios will drive changes in chemical risks to human and ecosystem health; (2) identify short-to-medium term adaptation and mitigation strategies, to abate unacceptable increases to risks, and (3) develop tools for use by industry and policymakers for the assessment and management of the impacts of GC-related drivers on chemical risks. This project will deliver the next generation of scientists, consultants, and industry and governmental decision-makers who have the knowledge and skillsets required to address the changing pressures associated with chemicals emitted by agricultural and urban activities, on aquatic systems on the path to 2050 and beyond.

14.
Environ Toxicol Chem ; 39(8): 1485-1505, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32474951

RESUMO

Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry, biological monitoring, and risk-assessment methodologies are necessary to address the adverse impacts of environmental stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of the food-energy-water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest chemical-producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485-1505. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecossistema , Desenvolvimento Sustentável , Animais , Ásia , Biodiversidade , Ecotoxicologia , Poluentes Ambientais/análise , Humanos , Medição de Risco
15.
J Hazard Mater ; 392: 122469, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32193115

RESUMO

Sorption is one of the key process that affects the fate and mobility of pharmaceuticals in the soil environment. Several models have been developed for estimating the sorption of organic chemicals, including ionisable compounds, in soil. However, the applicability of these models to pharmaceuticals has not been extensively tested. In this study, we generated a high-quality dataset on the sorption of twenty-one pharmaceuticals in different soil types and used these data to evaluate existing models and to develop new improved models. Sorption coefficients (Kd) of the pharmaceuticals ranged from 0.2 to 1249.2 L/kg. Existing models were unable to adequately estimate the measured sorption data. Using the data, new models were developed, incorporating molecular and soil descriptors, that outperformed the published models when evaluated against external data sets. While there is a need for further evaluation of these new models against broader sorption datasets obtained at environmentally relevant concentrations, in the future they could be highly useful in supporting environmental risk assessment and prioritization efforts for pharmaceutical ingredients.


Assuntos
Modelos Teóricos , Preparações Farmacêuticas/química , Poluentes do Solo/química , Adsorção , Relação Quantitativa Estrutura-Atividade
16.
Toxics ; 8(1)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053896

RESUMO

In order to assess the environmental risk of a pharmaceutical, information is needed on the sorption of the compound to solids. Here we use a high-quality database of measured sorption coefficients, all determined following internationally recognised protocols, to evaluate models that have been proposed for estimating sorption of pharmaceuticals from chemical structure, some of which are already being used for environmental risk assessment and prioritization purposes. Our analyses demonstrate that octanol-water partition coefficient (Kow) alone is not an effective predictor of ionisable pharmaceutical sorption in soils. Polyparameter models based on pharmaceutical characteristics in combination with key soil properties, such as cation exchange capacity, increase model complexity but yield an improvement in the predictive capability of soil sorption models. Nevertheless, as the models included in this analysis were only able to predict a maximum of 71% and 67% of the sorption coefficients for the compounds to within one log unit of the corresponding measured value in soils and sludge, respectively, there is a need for new models to be developed to better predict the sorption of ionisable pharmaceuticals in soil and sludge systems. The variation in sorption coefficients, even for a single pharmaceutical across different solid types, makes this an inherently difficult task, and therefore requires a broad understanding of both chemical and sorbent properties driving the sorption process.

17.
Environ Toxicol Chem ; 38(8): 1606-1624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31361364

RESUMO

Anticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges. We report and discuss 40 priority research questions following engagement of scientists and engineers in North America. These timely questions identify the importance of stimulating innovation and developing new methods, tools, and concepts in environmental chemistry and toxicology to improve assessment and management of chemical contaminants and other diverse environmental stressors. Grand challenges to achieving sustainable management of the environment are becoming increasingly complex and structured by global megatrends, which collectively challenge existing sustainable environmental quality efforts. Transdisciplinary, systems-based approaches will be required to define and avoid adverse biological effects across temporal and spatial gradients. Similarly, coordinated research activities among organizations within and among countries are necessary to address the priority research needs reported here. Acquiring answers to these 40 research questions will not be trivial, but doing so promises to advance sustainable environmental quality in the 21st century. Environ Toxicol Chem 2019;38:1606-1624. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Conservação dos Recursos Naturais , Ecotoxicologia , Pesquisa , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Humanos , América do Norte , Desenvolvimento Sustentável
18.
Environ Sci Process Impacts ; 21(4): 605-622, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30932118

RESUMO

Use of reclaimed wastewater for agricultural irrigation is seen as an attractive option to meet agricultural water demands of a growing number of countries suffering from water scarcity. However, reclaimed wastewater contains pollutants which are introduced to the agro-environment during the irrigation process. While water reuse guidelines do consider selected classes of pollutants, they do not account for the presence of pollutants of emerging concern such as pharmaceuticals and the potential risks these may pose. Here we use source-pathway-receptor analysis (S-P-R) to develop a holistic framework for evaluating the impacts of pharmaceuticals, present in wastewater used for agricultural irrigation, on human and ecosystem health and evaluate the data availability for the framework components. The developed framework comprised of 34 processes and compartments but a good level of knowledge was available for only five of these suggesting that currently it is not possible to fully establish the impacts of pharmaceuticals in wastewater irrigation systems. To address this, work is urgently needed to understand the fate and transport of pharmaceuticals in arable soil systems and the effects of chronic low-level exposure to these substances on microbes, invertebrates, plants, wildlife and humans. In addition, research pertaining to the fate, uptake and effects of pharmaceutical mixtures and metabolites is lacking as well as data on bio-accessibility of pharmaceuticals after ingestion. Scientific advancements in the five areas prioritised in terms of future research are needed before we are able to fully quantify the agricultural and human health risks associated with reclaimed wastewater use.


Assuntos
Agricultura , Ecossistema , Preparações Farmacêuticas/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Animais , Animais Selvagens , Humanos , Solo , Poluentes Químicos da Água/toxicidade
19.
Environ Sci Technol ; 52(21): 12494-12503, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30303372

RESUMO

Environmental risk assessment of pharmaceuticals requires the determination of their environmental exposure concentrations. Existing exposure modeling approaches are often computationally demanding, require extensive data collection and processing efforts, have a limited spatial resolution, and have undergone limited evaluation against monitoring data. Here, we present ePiE (exposure to Pharmaceuticals in the Environment), a spatially explicit model calculating concentrations of active pharmaceutical ingredients (APIs) in surface waters across Europe at ∼1 km resolution. ePiE strikes a balance between generating data on exposure at high spatial resolution while having limited computational and data requirements. Comparison of model predictions with measured concentrations of a diverse set of 35 APIs in the river Ouse (UK) and Rhine basins (North West Europe), showed around 95% were within an order of magnitude. Improved predictions were obtained for the river Ouse basin (95% within a factor of 6; 55% within a factor of 2), where reliable consumption data were available and the monitoring study design was coherent with the model outputs. Application of ePiE in a prioritisation exercise for the Ouse basin identified metformin, gabapentin, and acetaminophen as priority when based on predicted exposure concentrations. After incorporation of toxic potency, this changed to desvenlafaxine, loratadine, and hydrocodone.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Exposição Ambiental , Monitoramento Ambiental , Europa (Continente) , Rios
20.
Environ Toxicol Chem ; 37(11): 2776-2796, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30328173

RESUMO

There is increasing scientific and public concern over the presence of microplastics in the natural environment. We present the results of a systematic review of the literature to assess the weight of evidence for microplastics causing environmental harm. We conclude that microplastics do occur in surface water and sediments. Fragments and fibers predominate, with beads making up only a small proportion of the detected microplastic types. Concentrations detected are orders of magnitude lower than those reported to affect endpoints such as biochemistry, feeding, reproduction, growth, tissue inflammation and mortality in organisms. The evidence for microplastics acting as a vector for hydrophobic organic compounds to accumulate in organisms is also weak. The available data therefore suggest that these materials are not causing harm to the environment. There is, however, a mismatch between the particle types, size ranges, and concentrations of microplastics used in laboratory tests and those measured in the environment. Select environmental compartments have also received limited attention. There is an urgent need for studies that address this mismatch by performing high quality and more holistic monitoring studies alongside more environmentally realistic effects studies. Only then will we be able to fully characterize risks of microplastics to the environment to support the introduction of regulatory controls that can make a real positive difference to environmental quality. Environ Toxicol Chem 2018;37:2776-2796. © 2018 SETAC.


Assuntos
Monitoramento Ambiental , Conhecimento , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Poluentes Químicos da Água/análise , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA