Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Analyst ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140796

RESUMO

Enantiomers of a lipid erythro-sphingosine have been quantified with ≈4% accuracy by UV cold ion spectroscopy of their non-covalent complexes with a chiral aromatic molecule. The diastereomeric configuration of such complexes enables the quantification using just a single enantiomeric lipid standard and the identification of non-racemic solutions with no standards at all.

2.
J Phys Chem A ; 128(12): 2317-2322, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489273

RESUMO

Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature-controlled ion trap or by incomplete dehydration of the folded proteins. In the case of cryogenic condensation, the UV spectra of the complexes exhibit a resolved vibrational structure, which looks similar to the spectrum of bare unfolded ubiquitin. The spectra become, however, broad-band with no structure when complexes of the same size are produced by incomplete dehydration under soft conditions of electrospray ionization. We attribute this spectroscopic dissimilarity to the structural difference of the protein: condensing a few water molecules cannot refold the gas-phase structure of the bare ubiquitin, while the retained water preserves its solution-like folded motif through evaporative cooling. This assessment is firmly confirmed by IR spectroscopy, which reveals the presence of free NH and carboxylic OH stretching vibrations only in the complexes with condensed water.


Assuntos
Desidratação , Água , Humanos , Água/química , Análise Espectral , Proteínas , Ubiquitinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA