Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 169285, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38103612

RESUMO

Understanding mammalian responses to anthropogenic disturbance is challenging, as ecological processes and the patterns arising therefrom notoriously change across spatial and temporal scales, and among different landscape contexts. Responses to local scale disturbances are likely influenced by landscape context (e.g., overall landscape-level disturbance, landscape-level productivity). Hierarchical approaches considering small-scale sampling sites as nested holons within larger-scale landscapes, which constrain processes in lower-level holons, can potentially explain differences in ecological processes between multiple locations. We tested hypotheses about mammal responses to disturbance and interactions among holons using collected images from 957 camera sites across 9 landscapes in Alberta from 2007 to 2020 and examined occurrence for 11 mammal species using generalized linear mixed models. White-tailed deer occurred more in higher disturbed sites within lower disturbed landscapes (ß = -0.30 [-0.4 to -0.15]), whereas occurrence was greater in highly disturbed sites within highly disturbed landscapes for moose (ß = 0.20 [0.09-0.31]), coyote (ß = 0.20 [0.08-0.26]), and lynx (ß = 0.20 [0.07-0.26]). High disturbance sites in high productivity landscapes had higher occurrence of black bears (ß = -0.20 [-0.46 to -0.01]), lynx (ß = -0.70 [-0.97 to -0.34]), and wolves (ß = -0.50 [-0.73 to -0.21]). Conversely, we found higher probability of occurrence in low productivity landscapes with increasing site disturbance for mule deer (ß = 0.80 [0.39-1.14]), and white-tailed deer (ß = 0.20 [0.01-0.47]). We found the ecological context created by aggregate sums (high overall landscape disturbance), and by subcontinental hydrogeological processes in which that landscape is embedded (high landscape productivity), alter mammalian responses to anthropogenic disturbance at local scales. These responses also vary by species, which has implications for large-scale conservation planning. Management interventions must consider large-scale geoclimatic processes and geographic location of a landscape when assessing wildlife responses to disturbance.


Assuntos
Cervos , Lynx , Lobos , Animais , Ecossistema , Efeitos Antropogênicos
2.
Sci Total Environ ; 912: 169353, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104847

RESUMO

Soil microbial communities play a vital role in the biogeochemical cycling and ecological functioning of grassland, but may be affected by common land uses such as cattle grazing. Changes in microbial diversity and network complexity can affect key ecosystem functions such as nutrient cycling. However, it is not well known how microbial diversity and network complexity respond to grazing in the Northern Great Plains. Consequently, it is important to understand whether variation in grazing management alters the diversity and complexity of grassland microbial communities. We compared the effect of intensive adaptive multi-paddock (AMP) grazing and conventional grazing practices on soil microbial communities using 16S/ITS amplicon sequencing. Samples were collected from grasslands in 13 AMP ranches and 13 neighboring, conventional ranches located across the Canadian prairies. We found that AMP grazing increased fungal diversity and evenness, and led to more complex microbial associations. Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes were keystone taxa associated with AMP grazing, while Actinobacteria, Acidobacteria, Proteobacteria, and Armatimonadetes were keystone taxa under conventional grazing. Besides overall grazing treatment effects, specific grazing metrics like cattle stocking rate and rest-to-grazing ratio affected microbial richness and diversity. Bacterial and fungal richness increased with elevated stocking rate, and fungal richness and diversity increased directly with the rest-to-grazing ratio. These results suggest that AMP grazing may improve ecosystem by enhancing fungal diversity and increasing microbial network complexity and connectivity.


Assuntos
Ecossistema , Microbiota , Animais , Bovinos , Humanos , Solo , Pradaria , Microbiologia do Solo , Redes Comunitárias , Canadá , Bactérias
3.
Ecol Evol ; 13(9): e10464, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720065

RESUMO

Outdoor recreation is widespread, with uncertain effects on wildlife. The human shield hypothesis (HSH) suggests that recreation could have differential effects on predators and prey, with predator avoidance of humans creating a spatial refuge 'shielding' prey from people. The generality of the HSH remains to be tested across larger scales, wherein human shielding may prove generalizable, or diminish with variability in ecological contexts. We combined data from 446 camera traps and 79,279 sampling days across 10 landscapes spanning 15,840 km2 in western Canada. We used hierarchical models to quantify the influence of recreation and landscape disturbance (roads, logging) on ungulate prey (moose, mule deer and elk) and carnivore (wolf, grizzly bear, cougar and black bear) site use. We found limited support for the HSH and strong responses to recreation at local but not larger spatial scales. Only mule deer showed positive but weak landscape-level responses to recreation. Elk were positively associated with local recreation while moose and mule deer responses were negative, contrary to HSH predictions. Mule deer showed a more complex interaction between recreation and land-use disturbance, with more negative responses to recreation at lower road density or higher logged areas. Contrary to HSH predictions, carnivores did not avoid recreation and grizzly bear site use was positively associated. We also tested the effects of roads and logging on temporal activity overlap between mule deer and recreation, expecting deer to minimize interaction with humans by partitioning time in areas subject to more habitat disturbance. However, temporal overlap between people and deer increased with road density. Our findings highlight the complex ecological patterns that emerge at macroecological scales. There is a need for expanded monitoring of human and wildlife use of recreation areas, particularly multi-scale and -species approaches to studying the interacting effects of recreation and land-use change on wildlife.

4.
Ecol Evol ; 13(6): e10224, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37396026

RESUMO

Increasing resource extraction and human activity are reshaping species' spatial distributions in human-altered landscape and consequently shaping the dynamics of interspecific interactions, such as between predators and prey. To evaluate the effects of industrial features and human activity on the occurrence of wolves (Canis lupus), we used wildlife detection data collected in 2014 from an array of 122 remote wildlife camera traps in Alberta's Rocky Mountains and foothills near Hinton, Canada. Using generalized linear models, we compared the occurrence frequency of wolves at camera sites to natural land cover, industrial disturbance (forestry and oil/gas exploration), human activity (motorized and non-motorized), and prey availability (moose, Alces alces; elk, Cervus elaphus; mule deer, Odocoileus hemionus; and white-tailed deer, Odocoileus virginianus). Industrial block features (well sites and cutblocks) and prey (elk or mule deer) availability interacted to influence wolf occurrence, but models including motorized and non-motorized human activity were not strongly supported. Wolves occurred infrequently at sites with high densities of well sites and cutblocks, except when elk or mule deer were frequently detected. Our results suggest that wolves risk using industrial block features when prey occur frequently to increase predation opportunities, but otherwise avoid them due to risk of human encounters. Effective management of wolves in anthropogenically altered landscapes thus requires the simultaneous consideration of industrial block features and populations of elk and mule deer.

5.
PeerJ ; 11: e15215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342360

RESUMO

We describe temporal and spatial patterns of seasonal space-use and migration by 16 GPS-collared Stone's sheep (Ovis dalli stonei) from nine bands in the Cassiar Mountains of northern British Columbia, Canada. Our objectives were to identify the timing of spring and fall migrations, characterize summer and winter ranges, map and describe migration routes and use of stopover sites, and document altitudinal change across seasons. Our last objective was to assess individual migration strategies based on patterns of geographic migration, altitudinal migration, or residency. Median start and end dates of the spring migration were 12 and 17 Jun (range: 20 May to 05 Aug), and of the fall migration were 30 Aug and 22 Sep (range: 21 Aug to 07 Jan). The median area of winter and summer ranges for geographic migrants were 630.8 ha and 2,829.0 ha, respectively, with a broad range from about 233.6 to 10,196.2 ha. Individuals showed high fidelity to winter ranges over the limited duration of the study. The winter and summer ranges of most individuals (n = 15) were at moderate to high elevations with a median summer elevation of 1,709 m (1,563-1,827 m) and 1,673 m (1,478-1,751 m) that varied <150 m between ranges. Almost all collared females (n = 14) exhibited changes in elevation use that coincide with abbreviated altitudinal migration. Specifically, these females descended to lower spring elevations from their winter range (Δ > 150 m), and then gradually moved up to higher-elevation summer ranges (Δ > 150 m). In the fall, they descended to lower elevations (Δ > 100 m) before returning to their higher winter ranges. The median distance travelled along geographic migration routes was 16.3 km (range: 7.6-47.4 km). During the spring migration, most geographic migrants (n = 8) used at least one stopover site (median = 1.5, range: 0-4), while almost all migrants (n = 11) used stopover sites more frequently in the fall (median = 2.5, range: 0-6). Of the 13 migratory individuals that had at least one other collared individual in their band, most migrated at about the same time, occupied the same summer and winter ranges, used similar migration routes and stopover sites, and exhibited the same migration strategy. We found collared females exhibited four different migration strategies which mostly varied across bands. Migration strategies included long-distance geographic migrants (n = 5), short-distance geographic migrants (n = 5), vacillating migrants (n = 2), and abbreviated altitudinal migrants (n = 4). Different migratory strategies occurred within one band where one collared individual migrated and two did not. We conclude that female Stone's sheep in the Cassiar Mountains displayed a diverse assemblage of seasonal habitat use and migratory behaviors. By delineating seasonal ranges, migration routes and stopover sites, we identify potential areas of priority that can help inform land-use planning and preserve the native migrations of Stone's sheep in the region.


Assuntos
Ecossistema , Animais , Feminino , Ovinos , Estações do Ano , Colúmbia Britânica
6.
Ecol Evol ; 13(4): e9976, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091564

RESUMO

Wildlife population dynamics are modulated by abiotic and biotic factors, typically climate, resource availability, density-dependent effects, and predator-prey interactions. Understanding whether and how human-caused disturbances shape these ecological processes is helpful for the conservation and management of wildlife and their habitats within increasingly human-dominated landscapes. However, many jurisdictions lack either long-term longitudinal data on wildlife populations or measures of the interplay between human-mediated disturbance, climate, and predator density. Here, we use a 50-year time series (1962-2012) on mule deer (Odocoileus hemionus) demographics, seasonal weather, predator density, and oil and gas development patterns from the North Dakota Badlands, USA, to investigate long-term effects of landscape-level disturbance on mule deer fawn fall recruitment, which has declined precipitously over the last number of decades. Mule deer fawn fall recruitment in this study represents the number of fawns per female (fawn:female ratio) that survive through the summer to October. We used this fawn recruitment index to evaluate the composite effects of interannual extreme weather conditions, energy development, and predator density. We found that density-dependent effects and harsh seasonal weather were the main drivers of fawn fall recruitment in the North Dakota Badlands. These effects were further shaped by the interaction between harsh seasonal weather and predator density (i.e., lower fawn fall recruitment when harsh weather was combined with higher predator density). Additionally, we found that fawn fall recruitment was modulated by interactions between seasonal weather and energy development (i.e., lower fawn fall recruitment when harsh weather was combined with higher density of active oil and gas wells). Interestingly, we found that the combined effect of predator density and energy development was not interactive but rather additive. Our analysis demonstrates how energy development may modulate fluctuations in mule deer fawn fall recruitment concurrent with biotic (density-dependency, habitat, predation, woody vegetation encroachment) and abiotic (harsh seasonal weather) drivers. Density-dependent patterns emerge, presumably due to limited quality habitat, being the primary factor influencing fall fawn recruitment in mule deer. Secondarily, stochastic weather events periodically cause dramatic declines in recruitment. And finally, the additive effects of human disturbance and predation can induce fluctuations in fawn fall recruitment. Here we make the case for using long-term datasets for setting long-term wildlife management goals that decision makers and the public can understand and support.

7.
PLoS One ; 17(10): e0269407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36288266

RESUMO

Large predators often are believed to cause declines in hunter harvests of ungulates due to direct competition for prey with hunters. In Alberta, predators of elk (Cervus elaphus), including grizzly bear (Ursus arctos), cougar (Puma concolor), and wolf (Canis lupus), have increased in recent years. We used trend analysis replicated by Wildlife Management Unit (WMU) to examine regional trends in elk harvest and hunter success. Over a 26-yr period, average harvest of elk increased by 5.46% per year for unrestricted bull and by 6.64% per year for limited-quota seasons. Also, over the same time frame, average hunter success increased by 0.2% per year for unrestricted bull and by 0.3% per year for limited-quota seasons, but no trend was detected in hunter effort (P>0.05). Our results show that increasing large-predator populations do not necessarily reduce hunter harvest of elk, and we only found evidence for this in Alberta's mountain WMUs where predation on elk calves has reduced recruitment. Furthermore, data indicate that Alberta's elk harvest management has been sustainable, i.e., hunting has continued while populations of elk have increased throughout most of the province. Wildlife agencies can justify commitments to long-term population monitoring because data allow adaptive management and can inform stakeholders on the status of populations.


Assuntos
Cervos , Ursidae , Lobos , Animais , Dinâmica Populacional , Alberta , Comportamento Predatório , Animais Selvagens
8.
Glob Ecol Biogeogr ; 31(8): 1526-1541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247232

RESUMO

Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location: Worldwide. Time period: 1998-2021. Major taxa studied: Forty-nine terrestrial mammal species. Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.

9.
Sci Total Environ ; 796: 148975, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34271393

RESUMO

Adaptive multi-paddock (AMP) grazing, a grazing system in which individual paddocks are grazed for a short duration at a high stock density and followed by a long rest period, is claimed to be an effective tool to sustainably manage and improve grasslands and enhance their ecosystem services. However, whether AMP grazing is superior to conventional grazing (n-AMP) in reducing soil greenhouse gas (GHG) emissions is unclear. Here, we measured CO2, CH4, and N2O fluxes between August 2017 and August 2019 in 12 pairs of AMP vs. n-AMP ranches distributed across an agro-climatic gradient in Alberta, Canada. We found that field GHG fluxes did not differ between AMP and n-AMP grazing systems, but instead were regulated by specific management attributes, environmental conditions, and soil properties, including cattle stocking rate, cultivation history, soil moisture content, and soil bulk density. Specifically, we found that seasonal mean CO2 emissions increased with increasing cattle stocking rates, while CH4 uptake was lower in grasslands with a history of cultivation. Seasonal mean CO2 emissions increased while CH4 uptake decreased with increasing soil moisture content. In addition, CH4 uptake decreased with increasing soil bulk density. Observed N2O emissions were poorly predicted by the management, environmental conditions, and soil properties investigated in our study. We conclude that AMP grazing does not have an advantage over n-AMP grazing in reducing GHG fluxes from grasslands. Future efforts to develop optimal management strategies (e.g., the use of sustainable stocking rates and avoided cultivation) that reduce GHG emissions should also consider the environmental conditions and soil properties unique to every grassland ecosystem.


Assuntos
Gases de Efeito Estufa , Alberta , Animais , Dióxido de Carbono/análise , Bovinos , Ecossistema , Pradaria , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo
10.
Trends Ecol Evol ; 36(8): 737-749, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33994219

RESUMO

Migratory prey experience spatially variable predation across their life cycle. They face unique challenges in navigating this predation landscape, which affects their perception of risk, antipredator responses, and resulting mortality. Variable and unfamiliar predator cues during migration can limit accurate perception of risk and migrants often rely on social information and learning to compensate. The energetic demands of migration constrain antipredator responses, often through context-dependent patterns. While migration can increase mortality, migrants employ diverse strategies to balance risks and rewards, including life history and antipredator responses. Humans interact frequently with migratory prey across space and alter both mortality risk and antipredator responses, which can scale up to affect migratory populations and should be considered in conservation and management.


Assuntos
Ecologia , Comportamento Predatório , Animais , Sinais (Psicologia) , Humanos , Aprendizagem
11.
PLoS One ; 16(3): e0247964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657186

RESUMO

Several species of bears are known to rub deliberately against trees and other objects, but little is known about why bears rub. Patterns in rubbing behavior of male and female brown bears (Ursus arctos) suggest that scent marking via rubbing functions to communicate among potential mates or competitors. Using DNA from bear hairs collected from rub objects in southwestern Alberta from 2011-2014 and existing DNA datasets from Montana and southeastern British Columbia, we determined sex and individual identity of each bear detected. Using these data, we completed a parentage analysis. From the parentage analysis and detection data, we determined the number of offspring, mates, unique rub objects where an individual was detected, and sampling occasions during which an individual was detected for each brown bear identified through our sampling methods. Using a Poisson regression, we found a positive relationship between bear rubbing behavior and reproductive success; both male and female bears with a greater number of mates and a greater number of offspring were detected at more rub objects and during more occasions. Our results suggest a fitness component to bear rubbing, indicate that rubbing is adaptive, and provide insight into a poorly understood behaviour.


Assuntos
Comportamento Sexual Animal , Ursidae/fisiologia , Animais , Colúmbia Britânica , DNA/genética , Feminino , Masculino , Montana , Reprodução , Ursidae/genética
12.
J Environ Manage ; 269: 110800, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561009

RESUMO

Borrow pits, dug by industry to provide substrate for infrastructure such as roads and well sites, are prevalent throughout the boreal forest of western Canada yet little is known about their use by wildlife. During field surveys in Rainbow Lake, Alberta, we found that beavers (Castor canadensis) used inundated borrow pits extensively for foraging and over wintering, suggesting that borrow pits increase beaver populations above their natural carrying capacity in industrial landscapes. We visited a random sample of 90 borrow pits in the field and categorized them as having active beaver lodges with caches (n = 16), inactive lodges (n = 13), cutting (n = 29), no activity (n = 13), or as not inundated or not a borrow pit (n = 19). We then used this sample to model where beavers established lodges versus where they were inactive or were only cutting. We found that borrow pits with active lodges had unique characteristics from other pits in our sample and were closer to streams, marshes, and swamps and had greater vegetation concealment from roads. These models can be used by managers to develop methods for increasing or decreasing the abundance of beavers living at borrow pits. Wildlife managers might want to use borrow pits to increase beaver abundance because of the positive effects beavers can have on ecosystems and because beavers are an important source of food for boreal carnivores. For example, we found that wolverines (Gulo gulo) used borrow pits as hunting grounds for beavers and one wolverine denned within a beaver lodge at a borrow pit. Conversely, managers might want to reduce beaver populations living at borrow pits because of the damage that beavers can cause to infrastructure and because subsidized beaver populations might alter predator-prey dynamics. To accomplish this, we suggest reducing available vegetation around borrow pits, isolating new borrow pits from natural beaver habitats, digging borrow pits where there is less chance of having surface water, filling in borrow pits with substrate, or not creating borrow pits and using a centralized gravel pit or mine for substrate.


Assuntos
Ecossistema , Roedores , Alberta , Animais , Conservação dos Recursos Naturais , Rios
13.
Oecologia ; 192(3): 837-852, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982951

RESUMO

Phenological shifts are occurring in many ecosystems around the world. The capacity of species to adapt to changing phenology will be critical to their success under climate change scenarios. Failure to adjust migratory and reproductive timing to keep pace with the earlier onset of spring has led to negative demographic effects for populations of species across a variety of taxa. For caribou, there have been concerns that earlier spring green-up on calving areas might not be matched by earlier migration and parturition, potentially leading to a trophic mismatch with nutritional consequences for parturient and lactating caribou cows. However, there is limited evidence supporting these concerns. Here, we investigate the response of barren-ground caribou to changing spring phenology using data from telemetry and satellite imagery. From 2004 to 2016, we found that the average start of green-up on the calving area advanced by 7.25 days, while the start of migration advanced by 13.64 days, the end of migration advanced by 6.02 days, and the date of peak calving advanced by 9.42 days. Despite the advancing onset of green-up, we found no evidence for the development of a trophic mismatch because the advancing green-up coincided with earlier migration and calving by caribou. Changing snow cover on the late winter and migratory ranges was the most supported driver of advancing migratory behavior. The ability of caribou to adjust the timing of migratory and reproductive behavior in response to changing environmental conditions demonstrates the potential resilience of the species to some aspects of climate change.


Assuntos
Rena , Animais , Bovinos , Mudança Climática , Ecossistema , Feminino , Lactação , Estações do Ano
14.
Prev Vet Med ; 174: 104846, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31765959

RESUMO

Overlap of cattle and wild elk ranges in southwestern Alberta foothills is an opportunity for inter-species interactions. To assess the spatio-temporal patterns of disease transmission risk between cattle and elk, several risk indexes were defined to represent different transmission routes. Risk indexes were estimated by combining elk telemetry data obtained from 168 GPS-collared elk, and cattle management information obtained by interviews conducted in 16 cow-calf operations overlapping the elk home range. We assessed the bias resulting from ignoring cattle movement related to seasonnal grazing practices, and the impact of the assessment of spatio-temporal patterns of risk. Direct transmission risk indexes peaked during winter months, due to aggregation at higher densities of both elk and cattle on winter ranges and winter pastures, respectively. However, a summer peak also was observed when risk indexes were not adjusted for pasture area, due to larger cattle summer pastures overlapping a higher number of elk telemetry locations. We identified periods when the proximity of elk to specific features (such as mineral blocks, hay land, winter-feeding areas, or water sources) may increase the risk of inter-species transmission. Indirect transmission risk indexes increased with the survival of pathogens in the environment, as the temporal constraint for cattle and elk overlap decreased. Finally, integrating pasture management information substantially influenced the magnitude and temporal patterns of transmission risk indexes, highlighting the importance of collecting detailed livestock management data in the context of assessing the risk of inter-species disease transmission.


Assuntos
Criação de Animais Domésticos , Doenças dos Bovinos/transmissão , Cervos , Telemetria/veterinária , Alberta , Animais , Bovinos , Feminino , Masculino , Risco
15.
J Environ Manage ; 248: 109299, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376608

RESUMO

Understanding the underlying mechanisms driving population demographics such as species-habitat relationships and the spatial scale in which these relationships occur is essential for developing optimal management strategies. Here we evaluated how landscape characteristics and winter severity measured at three spatial scales (1 km2, 9 km2, and hunting unit) influenced white-tailed deer occurrence and abundance across North Dakota by using 10 years of winter aerial survey data and generalized linear mixed effects models. In general, forest, wetland, and Conservation Reserve Program (CRP) lands were the main drivers of deer occurrence and abundance in most of the spatial scales analyzed. However, the effects of habitat features vary between the home-range scale (9 km2) and the finer spatial scale (1 km2; i.e., within home ranges). While escape cover was the main factor driving white-tailed deer occurrence and abundance at broad spatial scales, at a fine spatial scale deer also selected for food (mainly residual winter cropland). With CRP appearing in nearly all top models, here we had strong evidence that this type of program will be fundamental to sustaining populations of white-tailed deer that can meet recreational demands. In addition, land managers should focus on ways to protect other escape covers (e.g., forest and wetland) on a broad spatial scale while encouraging landowners to supply winter resources at finer spatial scales. We therefore suggest a spatial multi-scale approach that involves partnerships among landowners and government agencies for effectively managing white-tailed deer.


Assuntos
Cervos , Animais , Demografia , Ecossistema , North Dakota , Estações do Ano
16.
Ecol Evol ; 9(4): 2189-2205, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847104

RESUMO

Adequate connectivity between discontinuous habitat patches is crucial for the persistence of metapopulations across space and time. Loss of landscape connectivity is often a direct result of fragmentation caused by human activities but also can be caused indirectly through anthropogenic climate change. Peary caribou (Rangifer tarandus pearyi) are widely dispersed across the islands of the Canadian Arctic Archipelago and rely on sea ice to move seasonally between island habitats throughout their range. Seasonal connectivity provided by sea ice is necessary to maintain genetic diversity and to facilitate dispersal and recolonization of areas from which caribou have been extirpated. We used least-cost path analysis and circuit theory to model connectivity across Peary caribou range, and future climate projections to investigate how this connectivity might be affected by a warming climate. Further, we used measures of current flow centrality to estimate the role of High Arctic islands in maintaining connectivity between Peary caribou populations and to identify and prioritize those islands and linkages most important for conservation. Our results suggest that the Bathurst Island complex plays a critical role in facilitating connectivity between Peary caribou populations. Large islands, including Banks, Victoria, and Ellesmere have limited roles in connecting Peary caribou. Without rigorous greenhouse gas emission reductions our projections indicate that by 2100 all connectivity between the more southern Peary caribou populations will be lost for important spring and early-winter movement periods. Continued connectivity across the Canadian Arctic Archipelago, and possibly Peary caribou persistence, ultimately hinges on global commitments to limit climate change. Our research highlights priority areas where, in addition to emission reductions, conservation efforts to maintain connectivity would be most effective.

17.
Ecol Evol ; 9(1): 73-89, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680097

RESUMO

Global biodiversity is decreasing rapidly. Parks and protected lands, while designed to conserve wildlife, often cannot provide the habitat protection needed for wide-ranging animals such as the American black bear (Ursus americanus). Conversely, private lands are often working landscapes (e.g., farming) that have high human footprints relative to protected lands. In southwestern Alberta, road densities are highest on private lands and black bears can be hunted year-round. On protected lands, road densities are lowest, and hunting is prohibited. On public lands under the jurisdiction of the provincial government (Crown lands), seasonal hunting is permitted. Population estimates are needed to calculate sustainable harvest levels and to monitor population trends. In our study area, there has never been a robust estimate of black bear density and spatial drivers of black bear density are poorly understood. We used non-invasive genetic sampling and indices of habitat productivity and human disturbance to estimate density and abundance for male and female black bears in 2013 and 2014 using two methods: spatially explicit capture-recapture (SECR) and resource-selection functions (RSF). Land tenure best explained spatial variation in black bear density. Black bear densities for females and males were highest on parkland and lowest on Crown lands. Sex ratios were female-biased on private lands, likely a result of lower harvests and movement of females out of areas with high male density. Synthesis and application: Both SECR and RSF methods clearly indicate spatial structuring of black bear density, with a strong influence based on how lands are managed. Land tenure influences the distribution of available foods and risk from humans. We emphasize the need for improved harvest reporting, particularly for non-licensed hunting on private land, to estimate the extent of black bear harvest mortality.

18.
Sci Adv ; 4(10): eaat8281, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30306133

RESUMO

Artelle et al. (2018) conclude that "hallmarks of science" are largely missing from North American wildlife management based on a desk review of selected hunting management plans and related documents found through Internet searches and email requests to state and provincial wildlife agencies. We highlight three fundamental problems that compromise the validity of the conclusions posited: missing information to support selection of "hallmarks of science," confusion about the roles and nature of science and management, and failure to engage effectively with the scientists and managers actively managing wildlife populations in North America.


Assuntos
Animais Selvagens , Animais , América do Norte , Estados Unidos
19.
Science ; 359(6379): 1002, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29496874
20.
PLoS One ; 13(2): e0191730, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29389939

RESUMO

Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised recreation in areas occupied by grizzly bears.


Assuntos
Recreação , Ursidae , Alberta , Animais , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA