Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
HGG Adv ; : 100303, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702885

RESUMO

Recent collaborative genome wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes; yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1, rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated 4 isogenic clones homozygous for the risk allele and 5 clones homozygous for the non-risk allele into neural precursor cells. Employing RNA-seq, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at FDR <0.05 and 259 genes at FDR <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1, a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.

2.
Cochlear Implants Int ; : 1-13, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591756

RESUMO

BACKGROUND: Despite the proven audiological benefits of Percutaneous Bone Anchored Hearing Aids (BAHAs) in paediatric patients with conductive or mixed hearing loss, their adoption has been limited due to concerns over implant failure and associated complications. This paper conducts a systematic review and meta-analysis to assess the prevalence of implant failure in paediatric populations, combined with a case series from our tertiary referral centre. METHODS: A comprehensive literature search identified 562 articles, from which 34 were included in the review, covering 1599 implants in 1285 patients. Our retrospective case series included consecutive patients from our tertiary referral centre who underwent percutaneous BAHA implantation from 2003-2019. RESULTS: Meta-analysis revealed an overall implant failure rate of 11%, predominantly attributed to traumatic extrusion. Our retrospective case series comprised 104 implantations in 76 patients, with a 4.8% failure rate. DISCUSSION: Factors contributing to the lower-than-expected failure rates in the case series likely included consistent use of 4 mm fixtures from a single manufacturer and older age at implantation. The study underscores the need for standardised reporting formats in bone conduction implants research, given the systematic review's limitations in study design heterogeneity, especially with the expected rise in the adoption of novel active devices.

3.
Cancers (Basel) ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38001699

RESUMO

Ring chromosomes (RC) are present in <10% of patients with hematological malignancies and are associated with poor prognosis. Until now, only small cohorts of patients with hematological neoplasms and concomitant RCs have been cytogenetically characterized. Here, we performed a conventional chromosome analysis on metaphase spreads from >13,000 patients diagnosed with hematological malignancies at the Johns Hopkins University Hospital and identified 98 patients with RCs-90 with myeloid malignancies and 8 with lymphoid malignancies. We also performed a targeted Next-Generation Sequencing (NGS) assay, using a panel of 642 cancer genes, to identify whether these patients harbor relevant pathogenic variants. Cytogenetic analyses revealed that RCs and marker chromosomes of unknown origin are concurrently present in most patients by karyotyping, and 93% of patients with NGS data have complex karyotypes. A total of 72% of these individuals have pathogenic mutations in TP53, most of whom also possess cytogenetic abnormalities resulting in the loss of 17p, including the loss of TP53. All patients with a detected RC and without complex karyotypes also lack TP53 mutations but have pathogenic mutations in TET2. Further, 70% of RCs that map to a known chromosome are detected in individuals without TP53 mutations. Our data suggest that RCs in hematological malignancies may arise through different mechanisms, but ultimately promote widespread chromosomal instability.

4.
BMC Genomics ; 24(1): 306, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286935

RESUMO

To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo, mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Camundongos , Humanos , Animais , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Mesencéfalo/metabolismo , Linhagem Celular , Diferenciação Celular , Cromatina/metabolismo
5.
Nat Genet ; 55(6): 1066-1075, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37308670

RESUMO

Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells. This approach identified 1,275 expression quantitative trait loci (local false discovery rate 10%) that manifested during the responses, many of which were colocalized with susceptibility loci identified by genome-wide association studies of infectious and autoimmune diseases, including the OAS1 splicing quantitative trait locus in a COVID-19 susceptibility locus. In summary, our analytical approach provides a unique framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution.


Assuntos
Doenças Autoimunes , COVID-19 , Tetranitrato de Pentaeritritol , Humanos , Estudo de Associação Genômica Ampla , Imunidade Inata
6.
Res Sq ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824793

RESUMO

To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate of disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo , mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable a proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.

7.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36747739

RESUMO

To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate of disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo , mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable a proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.

8.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187620

RESUMO

Recent collaborative genome wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes; yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1, rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated 4 isogenic clones homozygous for the risk allele and 5 clones homozygous for the non-risk allele into neural precursor cells. Employing RNA-seq, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at FDR <0.05 and 259 genes at FDR <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1, a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.

9.
J Neuroinflammation ; 19(1): 223, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076238

RESUMO

Multifactorial diseases are characterized by inter-individual variation in etiology, age of onset, and penetrance. These diseases tend to be relatively common and arise from the combined action of genetic and environmental factors; however, parsing the convoluted mechanisms underlying these gene-by-environment interactions presents a significant challenge to their study and management. For neurodegenerative disorders, resolving this challenge is imperative, given the enormous health and societal burdens they impose. The mechanisms by which genetic and environmental effects may act in concert to destabilize homeostasis and elevate risk has become a major research focus in the study of common disease. Emphasis is further being placed on determining the extent to which a unifying biological principle may account for the progressively diminishing capacity of a system to buffer disease phenotypes, as risk for disease increases. Data emerging from studies of common, neurodegenerative diseases are providing insights to pragmatically connect mechanisms of genetic and environmental risk that previously seemed disparate. In this review, we discuss evidence positing inflammation as a unifying biological principle of homeostatic destabilization affecting the risk, onset, and progression of neurodegenerative diseases. Specifically, we discuss how genetic variation associated with Alzheimer disease and Parkinson disease may contribute to pro-inflammatory responses, how such underlying predisposition may be exacerbated by environmental insults, and how this common theme is being leveraged in the ongoing search for effective therapeutic interventions.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Doença de Alzheimer/genética , Humanos , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Fatores de Risco
10.
Evolution ; 75(11): 2736-2746, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34596241

RESUMO

Parasite-mediated selection is widespread at loci involved in immune defense, but different defenses may experience different selective regimes. For defenses involved in clearing infections, purifying selection favoring a single most efficacious allele likely predominates. However, for defenses involved in sensing and recognizing infections, evolutionary arms races may make positive selection particularly important. This could manifest primarily within populations (e.g., balancing selection maintaining variation) or among them (e.g., spatially varying selection enhancing population differences in allele frequencies). We genotyped three toll-like receptors (TLR; involved in sensing infections) and three avian beta-defensins (involved in clearing infections) in 96 song sparrows (Melospiza melodia) from three breeding populations that differ in disease resistance. Variation-based indicators of selection (proportion of variable sites, proportion of nonsynonymous SNPs, proportion of sites bearing signatures of positive or purifying selection, rare allele frequencies) did not differ appreciably between the two locus types. However, differentiation was generally higher at infection-sensing than infection-clearing loci. Allele frequencies differed markedly at TLR3, driven by a variant predicted to alter protein function. Geographically structured variants at infection-sensing loci may reflect local adaptation to spatially heterogeneous parasite communities. Selective regimes experienced by infection-sensing versus infection-clearing loci may differ primarily due to parasite-mediated population differentiation.


Assuntos
Aves Canoras , Animais , Imunidade Inata/genética , Aves Canoras/genética
11.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097445

RESUMO

Areas of concern (AOCs) around the Great Lakes are characterized by historic and ongoing problems with microbial water quality, leading to beneficial use impairments (BUIs) such as beach postings and closures. In this study, we assessed river and beach sites within the Rouge River watershed, associated stormwater outfalls, and at Rouge Beach. The concentrations of Escherichia coli as well as human- and gull-specific qPCR microbial source tracking (MST) markers were assessed at all sites. A preliminary comparison of digital PCR (dPCR) methodologies for both MST markers was conducted regarding sensitivity and specificity. Within the watershed, the outfalls were found to be a prominent source of human fecal contamination, with two outfalls particularly affected by sewage cross-connections. However, the occurrence of human fecal contamination along Rouge Beach and in the lower portions of the watershed was largely dependent on rain events. Gull fecal contamination was the predominant source of contamination at the beach, particularly during dry weather. The multiplex human/gull dPCR methodology used in this study tended to be more sensitive than the individual quantitative PCR (qPCR) assays, with only a slight decrease in specificity. Both dPCR and qPCR methodologies identified the same predominance of human and gull markers in stormwater and beach locations, respectively; however, the dPCR multiplex assay was more sensitive and capable of detecting fecal contamination that was undetected by qPCR assays. These results demonstrate the dPCR assay used in this study could be a viable tool for MST studies to increase the ability to identify low levels of fecal contamination.IMPORTANCE Fecal contamination of recreational water poses a persistent and ongoing problem, particularly in areas of concern around the Great Lakes. The identification of the source(s) of fecal contamination is essential for safeguarding public health as well as guiding remediation efforts; however, fecal contamination may frequently be present at low levels and remain undetectable by certain methodologies. In this study, we utilized microbial source tracking techniques using both quantitative and digital PCR assays to identify sources of contamination. Our results indicated high levels of human fecal contamination within stormwater outfalls, while lower levels were observed throughout the watershed. Additionally, high levels of gull fecal contamination were detected at Rouge Beach, particularly during drier sampling events. Furthermore, our results indicated an increased sensitivity of the digital PCR assay to detect both human and gull contamination, suggesting it could be a viable tool for future microbial source tracking studies.


Assuntos
Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Fezes/microbiologia , Lagos/microbiologia , Esgotos/microbiologia , Microbiologia da Água , Animais , Bactérias/genética , Praias , Charadriiformes , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Great Lakes Region , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Recreação , Poluição da Água/análise , Qualidade da Água
12.
Front Psychol ; 9: 237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559936

RESUMO

Cognitive fatigue emerges in wide-ranging tasks and domains, but traditional vigilance tasks provide a well-studied context in which to explore the mechanisms underlying it. Though a variety of experimental methodologies have been used to investigate cognitive fatigue in vigilance, relatively little research has utilized electroencephalography (EEG), specifically event-related potentials (ERPs), to explore the nature of cognitive fatigue, also known as the vigilance decrement. Moreover, much of the research that has been done on vigilance and ERPs uses non-traditional vigilance paradigms, limiting generalizability to the established body of behavioral results and corresponding theories. In this study, we address concerns with prior research by (1) investigating the vigilance decrement using a well-established visual vigilance task, (2) utilizing a task designed to attenuate possible confounding ERP components present within a vigilance paradigm, and (3) informing our interpretations with recent findings from ERP research. We averaged data across electrodes located over the frontal, central, and parietal scalp. Then, we generated waveforms locked to the onset of critical low-frequency or non-critical high-frequency events during a 40 min task that was segregated into time blocks for data analysis. There were three primary findings from the analyses of these data. First, mean amplitude of N1 was greater during later blocks for both low-frequency and high-frequency events, a contradictory finding compared to past visual vigilance studies that is further discussed with respect to current interpretations of the N1 in visual attention tasks. Second, P3b mean amplitude following low-frequency events was reduced during later blocks, with a later onset latency. Third and finally, the decrease in P3b amplitude correlated with individual differences in the magnitude of the vigilance decrement, assessed using d'. The results provide evidence for degradations of cognitive processing efficiency brought on by extended time on task, leading to delayed processing and decreased discriminability of critical stimuli from non-critical stimuli. These conclusions are discussed in the context of the vigilance decrement and corresponding theoretical accounts.

13.
Top Cogn Sci ; 9(1): 83-101, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28067469

RESUMO

Visual working memory (VWM) is a construct hypothesized to store a small amount of accurate perceptual information that can be brought to bear on a task. Much research concerns the construct's capacity and the precision of the information stored. Two prominent theories of VWM representation have emerged: slot-based and continuous-resource mechanisms. Prior modeling work suggests that a continuous resource that varies over trials with variable capacity and a potential to make localization errors best accounts for the empirical data. Questions remain regarding the variability in VWM capacity and precision. Using a novel eye-tracking paradigm, we demonstrate that VWM facilitates search and exhibits effects of fixation frequency and recency, particularly for prior targets. Whereas slot-based memory models cannot account for the human data, a novel continuous-resource model does capture the behavioral and eye tracking data, and identifies the relevant resource as item activation.


Assuntos
Memória de Curto Prazo , Percepção Visual , Adolescente , Atenção , Feminino , Humanos , Masculino , Modelos Teóricos , Estimulação Luminosa , Adulto Jovem
14.
Front Hum Neurosci ; 10: 286, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445740

RESUMO

Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain's atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55-87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors.

15.
Chem Commun (Camb) ; 49(21): 2118-20, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23380915

RESUMO

Metallopeptides containing both the complex Cu(2+)-glycyl-glycyl-histidine (Cu-GGH) and the sequence WRWYCR were shown to possess antimicrobial activity against a variety of pathogenic bacteria, as well as bind to and cleave a variety of nucleic acids, suggesting potential mechanisms for antimicrobial activity that involve binding and/or irreversible cleavage of bacterial nucleic acids.


Assuntos
Anti-Infecciosos/química , Cobre/química , Desoxirribonucleases/metabolismo , Oligopeptídeos/química , Peptídeos/química , Ribonucleases/metabolismo , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , DNA/metabolismo , Testes de Sensibilidade Microbiana , Peptídeos/metabolismo , Peptídeos/farmacologia , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA