Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 8(1): 1, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609660

RESUMO

Despite the substantial impact of skin scarring on patients and the healthcare system, there is a lack of strategies to prevent scar formation, let alone methods to remodel mature scars. Here, we took a unique approach inspired by how healthy hairbearing skin undergoes physiological remodelling during the regular cycling of hair follicles. In this pilot clinical study, we tested if hair follicles transplanted into human scars can facilitate tissue regeneration and actively remodel fibrotic tissue, similar to how they remodel the healthy skin. We collected full-thickness skin biopsies and compared the morphology and transcriptional signature of fibrotic tissue before and after transplantation. We found that hair follicle tranplantation induced an increase in the epidermal thickness, interdigitation of the epidermal-dermal junction, dermal cell density, and blood vessel density. Remodelling of collagen type I fibres reduced the total collagen fraction, the proportion of thick fibres, and their alignment. Consistent with these morphological changes, we found a shift in the cytokine milieu of scars with a long-lasting inhibition of pro-fibrotic factors TGFß1, IL13, and IL-6. Our results show that anagen hair follicles can attenuate the fibrotic phenotype, providing new insights for developing regenerative approaches to remodel mature scars.

2.
Exp Dermatol ; 30(12): 1829-1833, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34173264

RESUMO

Skin injuries remain a persistent problem for users of lower-limb prostheses despite sustained progress in prosthesis design. One factor limiting the prevention of skin injuries is that skin on the residual limb is not suited to bear the mechanical loads of ambulation. One part of the body that is suited to this task is the sole of the foot. Here, we propose a novel strategy to actively augment skin's tolerance to load, increasing its resistance to mechanically induced injuries. We hypothesise that the load tolerance of skin can be augmented by autologous transplantation of plantar fibroblasts into the residual limb dermis. We expect that introducing plantar fibroblasts will induce the overlying keratinocytes to express plantar-specific keratins leading to a tougher epidermis. Using a computational finite element model of a weight-bearing residual limb, we estimate that skin deformation (a key driver of pressure ulcer injuries) could be halved by reprogramming skin to a plantar-like phenotype. We believe this strategy could yield new progress in pressure ulcer prevention for amputees, facilitating rehabilitation and improving quality of life for patients.


Assuntos
Amputados/reabilitação , Fibroblastos/transplante , Desenho de Prótese , Pele/lesões , Simulação por Computador , Antepé Humano , Humanos
3.
Dev Dyn ; 250(3): 450-464, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32776603

RESUMO

BACKGROUND: Abnormal fetal movements are implicated in joint pathologies such as arthrogryposis and developmental dysplasia of the hip (DDH). Experimentally induced paralysis disrupts joint cavitation and morphogenesis leading to postnatal abnormalities. However, the developmental window(s) most sensitive to immobility-and therefore the best time for intervention-have never been identified. Here, we systematically vary the timing and duration of paralysis during early chick hip joint development. We then test whether external manipulation of immobilized limbs can mitigate the effects of immobility. RESULTS: Timing of paralysis affected the level of disruption to joints, with paralysis periods between embryonic days 4 and 7 most detrimental. Longer paralysis periods produced greater disruption in terms of failed cavitation and abnormal femoral and acetabular geometry. External manipulation of an immobilized limb led to more normal morphogenesis and cavitation compared to un-manipulated limbs. CONCLUSIONS: Temporary paralysis is detrimental to joint development, particularly during days 4 to 7. Developmental processes in the very early stages of joint development may be critical to DDH, arthrogryposis, and other joint pathologies. The developing limb has the potential to recover from periods of immobility, and external manipulation provides an innovative avenue for prevention and treatment of developmental joint pathologies.


Assuntos
Acetábulo/embriologia , Articulação do Quadril/embriologia , Morfogênese , Paralisia , Animais , Embrião de Galinha
4.
J Invest Dermatol ; 140(5): 1075-1084.e11, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31682842

RESUMO

In skin homeostasis, dermal fibroblasts are responsible for coordinating the migration and differentiation of overlying epithelial keratinocytes. As hairy skin heals faster than nonhairy skin, we took bio-inspiration from the follicle and hypothesized that follicular fibroblasts would accelerate skin re-epithelialization after injury faster than interfollicular fibroblasts. Using both in vitro and ex vivo models of human skin wound closure, we found that hair follicle dermal papilla fibroblasts could accelerate closure of in vitro scratch wounds by 1.8-fold and epithelial growth capacity by 1.5-fold compared with controls (P < 0.05). We used a cytokine array to determine how the dermal papilla fibroblasts were eliciting this effect and identified two cytokines, sAXL and CCL19, that are released at significantly higher levels by follicular fibroblasts than by interfollicular subtypes. Using sAXL and CCL19 individually, we found that they could also increase closure of epithelial cells in a scratch wound by 1.2- and 1.5-fold, respectively, compared with controls (P < 0.05). We performed an unbiased transcriptional analysis, combined with pathway analysis, and postulate that sAXL accelerates wound closure by promoting migration and inhibiting epithelial differentiation of skin keratinocytes. Long term, we believe these results can be exploited to accelerate wound closure of human skin in vivo.


Assuntos
Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Folículo Piloso/fisiologia , Queratinócitos/fisiologia , Pele/patologia , Ferimentos e Lesões/metabolismo , Adulto , Secreções Corporais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocina CCL19/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Proteoma , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Pele/metabolismo , Cicatrização , Ferimentos e Lesões/patologia , Receptor Tirosina Quinase Axl
5.
Sci Adv ; 5(10): eaay0244, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31633031

RESUMO

Plantar skin on the soles of the feet has a distinct morphology and composition that is thought to enhance its tolerance to mechanical loads, although the individual contributions of morphology and composition have never been quantified. Here, we combine multiscale mechanical testing and computational models of load bearing to quantify the mechanical environment of both plantar and nonplantar skin under load. We find that morphology and composition play distinct and complementary roles in plantar skin's load tolerance. More specifically, the thick stratum corneum provides protection from stress-based injuries such as skin tears and blisters, while epidermal and dermal compositions provide protection from deformation-based injuries such as pressure ulcers. This work provides insights into the roles of skin morphology and composition more generally and will inform the design of engineered skin substitutes as well as the etiology of skin injury.


Assuntos
Pele/patologia , Estresse Mecânico , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Epiderme/patologia , Humanos , Microscopia de Força Atômica , Pele/lesões , Pele/metabolismo
6.
PLoS One ; 15(1): e0227064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31899778

RESUMO

When immobile or neuropathic patients are supported by beds or chairs, their soft tissues undergo deformations that can cause pressure ulcers. Current support surfaces that redistribute under-body pressures at vulnerable body sites have not succeeded in reducing pressure ulcer prevalence. Here we show that adding a supporting lateral pressure can counter-act the deformations induced by under-body pressure, and that this 'pressure equalisation' approach is a more effective way to reduce ulcer-inducing deformations than current approaches based on redistributing under-body pressure. A finite element model of the seated pelvis predicts that applying a lateral pressure to the soft tissue reduces peak von Mises stress in the deep tissue by a factor of 2.4 relative to a standard cushion (from 113 kPa to 47 kPa)-a greater effect than that achieved by using a more conformable cushion, which reduced von Mises stress to 75 kPa. Combining both a conformable cushion and lateral pressure reduced peak von Mises stresses to 25 kPa. The ratio of peak lateral pressure to peak under-body pressure was shown to regulate deep tissue stress better than under-body pressure alone. By optimising the magnitude and position of lateral pressure, tissue deformations can be reduced to that induced when suspended in a fluid. Our results explain the lack of efficacy in current support surfaces and suggest a new approach to designing and evaluating support surfaces: ensuring sufficient lateral pressure is applied to counter-act under-body pressure.


Assuntos
Desenho de Equipamento , Úlcera por Pressão/prevenção & controle , Terapia de Tecidos Moles/métodos , Fenômenos Biomecânicos , Nádegas , Humanos , Pelve , Pressão
7.
J Biomech ; 46(5): 918-24, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23398970

RESUMO

Many cardiovascular diseases are characterised by the restriction of blood flow through arteries. Stents can be expanded within arteries to remove such restrictions; however, tissue in-growth into the stent can lead to restenosis. In order to predict the long-term efficacy of stenting, a mechanobiological model of the arterial tissue reaction to stress is required. In this study, a computational model of arterial tissue response to stenting is applied to three clinically relevant stent designs. We ask the question whether such a mechanobiological model can differentiate between stents used clinically, and we compare these predictions to a purely mechanical analysis. In doing so, we are testing the hypothesis that a mechanobiological model of arterial tissue response to injury could predict the long-term outcomes of stent design. Finite element analysis of the expansion of three different stent types was performed in an idealised, 3D artery. Injury was calculated in the arterial tissue using a remaining-life damage mechanics approach. The inflammatory response to this initial injury was modelled using equations governing variables which represented tissue-degrading species and growth factors. Three levels of inflammation response were modelled to account for inter-patient variability. A lattice-based model of smooth muscle cell behaviour was implemented, treating cells as discrete agents governed by local rules. The simulations predicted differences between stent designs similar to those found in vivo. It showed that the volume of neointima produced could be quantified, providing a quantitative comparison of stents. In contrast, the differences between stents based on stress alone were highly dependent on the choice of comparison criteria. These results show that the choice of stress criteria for stent comparisons is critical. This study shows that mechanobiological modelling may provide a valuable tool in stent design, allowing predictions of their long-term efficacy. The level of inflammation was shown to affect the sensitivity of the model to stent design. If this finding was verified in patients, this could suggest that high-inflammation patients may require alternative treatments to stenting.


Assuntos
Artérias/fisiopatologia , Modelos Cardiovasculares , Desenho de Prótese , Stents , Estresse Mecânico , Artérias/lesões , Artérias/patologia
8.
J Biomech Eng ; 133(8): 081001, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21950894

RESUMO

One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed "restenosis." In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.


Assuntos
Angioplastia Coronária com Balão , Biologia Computacional/métodos , Vasos Coronários/patologia , Fenômenos Mecânicos , Modelos Biológicos , Stents , Fenômenos Biomecânicos , Calibragem , Reestenose Coronária/complicações , Reestenose Coronária/patologia , Reestenose Coronária/fisiopatologia , Reestenose Coronária/terapia , Vasos Coronários/fisiopatologia , Humanos , Inflamação/complicações , Inflamação/patologia , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA