Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732929

RESUMO

The treatment of epilepsy, the second most common chronic neurological disorder, is often complicated by the failure of patients to respond to medication. Treatment failure with anti-seizure medications is often due to the presence of non-epileptic seizures. Distinguishing non-epileptic from epileptic seizures requires an expensive and time-consuming analysis of electroencephalograms (EEGs) recorded in an epilepsy monitoring unit. Machine learning algorithms have been used to detect seizures from EEG, typically using EEG waveform analysis. We employed an alternative approach, using a convolutional neural network (CNN) with transfer learning using MobileNetV2 to emulate the real-world visual analysis of EEG images by epileptologists. A total of 5359 EEG waveform plot images from 107 adult subjects across two epilepsy monitoring units in separate medical facilities were divided into epileptic and non-epileptic groups for training and cross-validation of the CNN. The model achieved an accuracy of 86.9% (Area Under the Curve, AUC 0.92) at the site where training data were extracted and an accuracy of 87.3% (AUC 0.94) at the other site whose data were only used for validation. This investigation demonstrates the high accuracy achievable with CNN analysis of EEG plot images and the robustness of this approach across EEG visualization software, laying the groundwork for further subclassification of seizures using similar approaches in a clinical setting.


Assuntos
Eletroencefalografia , Epilepsia , Aprendizado de Máquina , Redes Neurais de Computação , Convulsões , Humanos , Eletroencefalografia/métodos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Adulto , Masculino , Algoritmos , Feminino , Pessoa de Meia-Idade
2.
Epilepsia ; 65(5): 1176-1202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426252

RESUMO

Computer vision (CV) shows increasing promise as an efficient, low-cost tool for video seizure detection and classification. Here, we provide an overview of the fundamental concepts needed to understand CV and summarize the structure and performance of various model architectures used in video seizure analysis. We conduct a systematic literature review of the PubMed, Embase, and Web of Science databases from January 1, 2000 to September 15, 2023, to identify the strengths and limitations of CV seizure analysis methods and discuss the utility of these models when applied to different clinical seizure phenotypes. Reviews, nonhuman studies, and those with insufficient or poor quality data are excluded from the review. Of the 1942 records identified, 45 meet inclusion criteria and are analyzed. We conclude that the field has shown tremendous growth over the past 2 decades, leading to several model architectures with impressive accuracy and efficiency. The rapid and scalable detection offered by CV models holds the potential to reduce sudden unexpected death in epilepsy and help alleviate resource limitations in epilepsy monitoring units. However, a lack of standardized, thorough validation measures and concerns about patient privacy remain important obstacles for widespread acceptance and adoption. Investigation into the performance of models across varied datasets from clinical and nonclinical environments is an essential area for further research.


Assuntos
Convulsões , Humanos , Convulsões/diagnóstico , Convulsões/classificação , Eletroencefalografia/métodos , Gravação em Vídeo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA