Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-36926040

RESUMO

Saccharomyces paradoxus is a model organism in ecology and evolution. However, its metabolism in its native habitat remains mysterious: it is frequently found growing on leaf litter, a habitat with few carbon sources that S. paradoxus can metabolize. We hypothesized that leaf-decomposing fungi from the same habitat break down the cellulose in leaf litter extracellularly and release glucose, supporting S. paradoxus growth. We found that facilitation by leaf-decomposing fungi was possible on cellulose and inhibition was common on glucose, suggesting diverse interactions between S. paradoxus and other fungi that have the potential to support S. paradoxus in nature.

2.
Yeast ; 39(1-2): 4-24, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35146791

RESUMO

Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats and no doubt contribute to broader ecosystem-wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here, we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well-studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.


Assuntos
Ecossistema , Árvores , Biodiversidade , Florestas , Leveduras/genética
4.
Ecol Evol ; 11(11): 6604-6619, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141244

RESUMO

Microorganisms are famous for adapting quickly to new environments. However, most evidence for rapid microbial adaptation comes from laboratory experiments or domesticated environments, and it is unclear how rates of adaptation scale from human-influenced environments to the great diversity of wild microorganisms. We examined potential monthly-scale selective pressures in the model forest yeast Saccharomyces paradoxus. Contrary to expectations of seasonal adaptation, the S. paradoxus population was stable over four seasons in the face of abiotic and biotic environmental changes. While the S. paradoxus population was diverse, including 41 unique genotypes among 192 sampled isolates, there was no correlation between S. paradoxus genotypes and seasonal environments. Consistent with observations from other S. paradoxus populations, the forest population was highly clonal and inbred. This lack of recombination, paired with population stability, implies that selection is not acting on the forest S. paradoxus population on a seasonal timescale. Saccharomyces paradoxus may instead have evolved generalism or phenotypic plasticity with regard to seasonal environmental changes long ago. Similarly, while the forest population included diversity among phenotypes related to intraspecific interference competition, there was no evidence for active coevolution among these phenotypes. At least ten percent of the forest S. paradoxus individuals produced "killer toxins," which kill sensitive Saccharomyces cells, but the presence of a toxin-producing isolate did not predict resistance to the toxin among nearby isolates. How forest yeasts acclimate to changing environments remains an open question, and future studies should investigate the physiological responses that allow microbial cells to cope with environmental fluctuations in their native habitats.

5.
Annu Rev Microbiol ; 74: 477-495, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32689915

RESUMO

The genus Saccharomyces is an evolutionary paradox. On the one hand, it is composed of at least eight clearly phylogenetically delineated species; these species are reproductively isolated from each other, and hybrids usually cannot complete their sexual life cycles. On the other hand, Saccharomyces species have a long evolutionary history of hybridization, which has phenotypic consequences for adaptation and domestication. A variety of cellular, ecological, and evolutionary mechanisms are responsible for this partial reproductive isolation among Saccharomyces species. These mechanisms have caused the evolution of diverse Saccharomyces species and hybrids, which occupy a variety of wild and domesticated habitats. In this article, we introduce readers to the mechanisms isolating Saccharomyces species, the circumstances in which reproductive isolation mechanisms are effective and ineffective, and the evolutionary consequences of partial reproductive isolation. We discuss both the evolutionary history of the genus Saccharomyces and the human history of taxonomists and biologists struggling with species concepts in this fascinating genus.


Assuntos
Evolução Molecular , Saccharomyces/classificação , Saccharomyces/genética , Adaptação Fisiológica , Ecossistema , Humanos , Hibridização Genética , Filogenia , Saccharomyces/fisiologia
6.
Yeast ; 36(11): 657-668, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348543

RESUMO

Saccharomyces yeasts are emerging as model organisms for ecology and evolution, and researchers need environmental Saccharomyces isolates to test ecological and evolutionary hypotheses. However, methods for isolating Saccharomyces from nature have not been standardized, and isolation methods may influence the genotypes and phenotypes of studied strains. We compared the effectiveness and potential biases of an established enrichment culturing method against a newly developed direct plating method for isolating forest floor Saccharomyces spp. In a European forest, enrichment culturing was both less successful at isolating Saccharomyces paradoxus per sample collected and less labour intensive per isolated S. paradoxus colony than direct isolation. The two methods sampled similar S. paradoxus diversity: The number of unique genotypes sampled (i.e., genotypic diversity) per S. paradoxus isolate and average growth rates of S. paradoxus isolates did not differ between the two methods, and growth rate variances (i.e., phenotypic diversity) only differed in one of three tested environments. However, enrichment culturing did detect rare Saccharomyces cerevisiae in the forest habitat and also found two S. paradoxus isolates with outlier phenotypes. Our results validate the historically common method of using enrichment culturing to isolate representative collections of environmental Saccharomyces. We recommend that researchers choose a Saccharomyces sampling method based on resources available for sampling and isolate screening. Researchers interested in discovering new Saccharomyces phenotypes or rare Saccharomyces species from natural environments may also have more success using enrichment culturing. We include step-by-step sampling protocols in the supplemental materials.


Assuntos
Florestas , Técnicas Microbiológicas/métodos , Saccharomyces/genética , Saccharomyces/isolamento & purificação , Microbiologia do Solo , Genótipo , Fenótipo
7.
Yeast ; 36(8): 473-485, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31050852

RESUMO

Killer yeasts are ubiquitous in the environment: They have been found in diverse habitats ranging from ocean sediment to decaying cacti to insect bodies and on all continents including Antarctica. However, environmental killer yeasts are poorly studied compared with laboratory and domesticated killer yeasts. Killer yeasts secrete so-called killer toxins that inhibit nearby sensitive yeasts, and the toxins are frequently assumed to be tools for interference competition in diverse yeast communities. The diversity and ubiquity of killer yeasts imply that interference competition is crucial for shaping yeast communities. Additionally, these toxins may have ecological functions beyond use in interference competition. This review introduces readers to killer yeasts in environmental systems, with a focus on what is and is not known about their ecology and evolution. It also explores how results from experimental killer systems in laboratories can be extended to understand how competitive strategies shape yeast communities in nature. Overall, killer yeasts are likely to occur everywhere yeasts are found, and the killer phenotype has the potential to radically shape yeast diversity in nature.


Assuntos
Fatores Matadores de Levedura/metabolismo , Leveduras/fisiologia , Antibiose , Biodiversidade , Coevolução Biológica , Ecossistema , Micovírus/fisiologia , Aptidão Genética , Modelos Biológicos , Fenótipo , Leveduras/classificação , Leveduras/metabolismo , Leveduras/virologia
8.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635382

RESUMO

A large number of descriptive surveys have shown that microbial communities experience successional changes over time and that ecological dominance is common in the microbial world. However, direct evidence for the ecological processes mediating succession or causing ecological dominance remains rare. Different dispersal abilities among species may be a key mechanism. We surveyed fungal diversity within a metacommunity of pitchers of the model carnivorous plant Sarracenia purpurea and discovered that the yeast Candida pseudoglaebosa was ecologically dominant. Its frequency in the metacommunity increased during the growing season, and it was not replaced by other taxa. We next measured its competitive ability in a manipulative laboratory experiment and tracked its dispersal over time in nature. Despite its dominance, C. pseudoglaebosa is not a superior competitor. Instead, it is a superior disperser: it arrives in pitchers earlier, and disperses into more pitchers, than other fungi. Differential dispersal across the spatially structured metacommunity of individual pitchers emerges as a key driver of the continuous dominance of C. pseudoglaebosa during succession.IMPORTANCE Microbial communities are ubiquitous and occupy nearly every imaginable habitat and resource, including human-influenced habitats (e.g., fermenting food and hospital surfaces) and habitats with little human influence (e.g., aquatic communities living in carnivorous plant pitchers). We studied yeast communities living in pitchers of the carnivorous purple pitcher plant to understand how and why microbial communities change over time. We found that dispersal ability is not only important for fungal communities early in their existence, it can also determine which species is dominant (here, the yeast Candida pseudoglaebosa) long after the species and its competitors have arrived. These results contrast with observations from many human-influenced habitats, in which a good competitor eventually outcompetes good dispersers, since humans often design these habitats to favor a specific competitor. This study will help microbiologists understand the qualities of microbial species that enable takeover of new habitats in both natural and human-influenced environments.


Assuntos
Fungos/crescimento & desenvolvimento , Microbiota , Sarraceniaceae/microbiologia , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação
9.
Yeast ; 35(1): 85-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28967670

RESUMO

Errors in meiosis can be important postzygotic barriers between different species. In Saccharomyces hybrids, chromosomal missegregation during meiosis I produces gametes with missing or extra chromosomes. Gametes with missing chromosomes are inviable, but we do not understand how extra chromosomes (disomies) influence hybrid gamete inviability. We designed a model predicting rates of missegregation in interspecific hybrid meioses assuming several different mechanisms of disomy tolerance, and compared predictions from the model with observations of sterility in hybrids between Saccharomyces yeast species. Sterility observations were consistent with the hypothesis that chromosomal missegregation causes hybrid sterility, and the model indicated that missegregation probabilities of 13-50% per chromosome can cause observed values of 90-99% hybrid sterility regardless of how cells tolerate disomies. Missing chromosomes in gametes are responsible for most infertility, but disomies may kill as many as 11% of the gametes produced by hybrids between Saccharomyces cerevisiae and Saccharomyces paradoxus. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Aneuploidia , Segregação de Cromossomos/genética , Cromossomos Fúngicos/genética , Hibridização Genética , Meiose , Modelos Genéticos , Saccharomyces/genética , Saccharomyces/fisiologia
10.
Mol Ecol Resour ; 17(3): 370-380, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27333260

RESUMO

Microbial fitness is easy to measure in the laboratory, but difficult to measure in the field. Laboratory fitness assays make use of controlled conditions and genetically modified organisms, neither of which are available in the field. Among other applications, fitness assays can help researchers detect adaptation to different habitats or locations. We designed a competitive fitness assay to detect adaptation of Saccharomyces paradoxus isolates to the habitat they were isolated from (oak or larch leaf litter). The assay accurately measures relative fitness by tracking genotype frequency changes in the field using digital droplet PCR (DDPCR). We expected locally adapted S. paradoxus strains to increase in frequency over time when growing on the leaf litter type from which they were isolated. The DDPCR assay successfully detected fitness differences among S. paradoxus strains, but did not find a tendency for strains to be adapted to the habitat they were isolated from. Instead, we found that the natural alleles of the hexose transport gene we used to distinguish S. paradoxus strains had significant effects on fitness. The origin of a strain also affected its fitness: strains isolated from oak litter were generally fitter than strains from larch litter. Our results suggest that dispersal limitation and genetic drift shape S. paradoxus populations in the forest more than local selection does, although further research is needed to confirm this. Tracking genotype frequency changes using DDPCR is a practical and accurate microbial fitness assay for natural environments.


Assuntos
Ecossistema , Aptidão Genética , Genética Populacional , Saccharomyces/genética , Adaptação Fisiológica , Deriva Genética , Genótipo , Saccharomyces/fisiologia , Seleção Genética
11.
Mol Ecol ; 26(7): 1860-1876, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27997057

RESUMO

Local adaptation is an outcome of divergent selection on microbial populations and has been linked to the immense genetic diversity of microbes observed in nature. Because it is difficult to study microbes in their natural habitats, most tests of microbial local adaptation have been performed in model laboratory systems; as a result, microbiologists have limited understanding of local adaptation among natural microbial populations. In this review, we summarize the evidence for microbial local adaptation in nature. Local adaptation has been most frequently studied, and most frequently found, in host-pathogen systems. We argue that more research is needed to understand the prevalence of local adaptation in free-living microbial populations. However, researchers will need to overcome a variety of logistical and conceptual challenges when studying natural microbial local adaptation, including a lack of solid understanding of many microbes' natural histories. We propose strategies to facilitate future natural history research on divergent selection. We also summarize laboratory experimental work investigating the ecological and evolutionary processes leading to local adaptation. Microbiologists' ongoing challenge is to integrate the valuable knowledge gained from laboratory experiments into well-designed field experiments. Such integration will help us understand the prevalence of, and circumstances leading to, local adaptation among microorganisms.


Assuntos
Adaptação Fisiológica/genética , Bactérias/genética , Evolução Biológica , Microbiologia Ambiental , Vírus/genética , Ecossistema , Fluxo Gênico , Especiação Genética , Genética Populacional , Genótipo , Seleção Genética
12.
Data Brief ; 8: 225-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27331092

RESUMO

Grape must is the precursor to wine, and consists of grape juice and its resident microbial community. We used Illumina MiSeq® to track changes in must fungal community composition over time in winery vats and laboratory microcosms. We also measured glucose consumption and biomass in microcosms derived directly from must, and glucose consumption in artificially assembled microcosms. Functional impacts of individual must yeasts in artificially assembled communities were calculated using a "keystone index," developed for "Species richness influences wine ecosystem function through a dominant species" [1]. Community composition data and functional measurements are included in this article. DNA sequences were deposited in GenBank (GenBank: SRP073276). Discussion of must succession and ecosystem functioning in must are provided in [1].

13.
Age (Dordr) ; 37(5): 90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26318854

RESUMO

One of the biggest challenges to studying causes and effects of aging is identifying changes in cells that are related to senescence instead of simply the passing of chronological time. We investigated two populations of the longest living non-colonial metazoan, Arctica islandica, with lifespans that differed sixfolds. Of four investigated parameters (nucleic acid oxidation, protein oxidation, lipid oxidation, and protein instability), only nucleic acid oxidation increased with age and correlated with relative lifespan. Nucleic acid oxidation levels increased significantly faster and were significantly higher in the shorter-lived than the longer-lived population. In contrast, neither protein oxidation, lipid oxidation, nor protein stability changed over time. Protein resistance to unfolding stress when treated with urea was significantly lower overall in the shorter-lived population, and lipid peroxidation levels were higher in the longer-lived population. With the exception of nucleic acid oxidation, damage levels of A. islandica do not change with age, indicating excellent cellular maintenance in both populations. Since correlations between nucleic acid oxidation and age have also been shown previously in other organisms, and nucleic acid oxidation accumulation rate correlates with relative age in both investigated populations, nucleic acid oxidation may reflect intrinsic aging mechanisms.


Assuntos
Envelhecimento/metabolismo , Bivalves/fisiologia , Longevidade/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Peroxidação de Lipídeos
14.
Yeast ; 31(12): 449-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242436

RESUMO

Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution.


Assuntos
Evolução Biológica , Ecossistema , Variação Genética , Saccharomyces/classificação , Saccharomyces/genética
15.
New Phytol ; 181(2): 463-470, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19121040

RESUMO

In disturbed or pioneer settings, spores and sclerotia of ectomycorrhizal fungi serve as the necessary inoculum for establishment of ectomycorrhizal-dependent trees. Yet, little is known about the persistence of these propagules through time. Here, live field soil was inoculated with known quantities of basidiospores from four pine-associated species of Rhizopogon; these samples were then buried in retrievable containers, and pine seedling bioassays of serially diluted spore samples were used to measure spore viability. In the first 4 yr, no evidence of loss of spore viability was found in the four Rhizopogon species tested, but all four species exhibited dormancy in which a maximum of 1-8% of their spores were initially receptive to pine roots. There were some differences between species in overall inoculum potential of their spores, but all species broke dormancy at a statistically similar rate. This result provides evidence for spore dormancy in a common ectomycorrhizal genus, but it also precludes our ability to estimate the longevity of the spores accurately. Nevertheless these results, coupled with the observed patterns of Rhizopogon spore banks, suggest that at least decade-long durations are likely. As this experiment progresses, the true longevity of the spores will eventually be revealed.


Assuntos
Basidiomycota/fisiologia , Pinus/microbiologia , Esporos Fúngicos/fisiologia , Micorrizas/fisiologia , Plântula , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA