Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 794, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278795

RESUMO

Nonlinear epsilon-near-zero (ENZ) nanodevices featuring vanishing permittivity and CMOS-compatibility are attractive solutions for large-scale-integrated systems-on-chips. Such confined systems with unavoidable heat generation impose critical challenges for semiconductor-based ENZ performances. While their optical properties are temperature-sensitive, there is no systematic analysis on such crucial dependence. Here, we experimentally report the linear and nonlinear thermo-optic ENZ effects in indium tin oxide. We characterize its temperature-dependent optical properties with ENZ frequencies covering the telecommunication O-band, C-band, and 2-µm-band. Depending on the ENZ frequency, it exhibits an unprecedented 70-93-THz-broadband 660-955% enhancement over the conventional thermo-optic effect. The ENZ-induced fast-varying large group velocity dispersion up to 0.03-0.18 fs2nm-1 and its temperature dependence are also observed for the first time. Remarkably, the thermo-optic nonlinearity demonstrates a 1113-2866% enhancement, on par with its reported ENZ-enhanced Kerr nonlinearity. Our work provides references for packaged ENZ-enabled photonic integrated circuit designs, as well as a new platform for nonlinear photonic applications and emulations.

2.
Opt Express ; 31(24): 40916-40927, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041380

RESUMO

Broadband continuous-wave parametric gain and efficient wavelength conversion is an important functionality to bring on-chip. Recently, meter-long silicon nitride waveguides have been utilized to obtain continuous-traveling-wave parametric gain, establishing the great potential of photonic-integrated-circuit-based parametric amplifiers. However, the effect of spiral structure on the performance and achievable bandwidth of such devices have not yet been studied. In this work, we investigate the efficiency-bandwidth performance in up to 2 meter-long waveguides engineered for broadband operation. Moreover, we analyze the conversion efficiency fluctuations that have been observed in meter-long Si3N4 waveguides and study the use of temperature control to limit the fluctuations.

3.
Light Sci Appl ; 12(1): 296, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062066

RESUMO

Second-harmonic generation allows for coherently bridging distant regions of the optical spectrum, with applications ranging from laser technology to self-referencing of frequency combs. However, accessing the nonlinear response of a medium typically requires high-power bulk sources, specific nonlinear crystals, and complex optical setups, hindering the path toward large-scale integration. Here we address all of these issues by engineering a chip-scale second-harmonic (SH) source based on the frequency doubling of a semiconductor laser self-injection-locked to a silicon nitride microresonator. The injection-locking mechanism, combined with a high-Q microresonator, results in an ultra-narrow intrinsic linewidth at the fundamental harmonic frequency as small as 41 Hz. Owing to the extreme resonant field enhancement, quasi-phase-matched second-order nonlinearity is photoinduced through the coherent photogalvanic effect and the high coherence is mapped on the generated SH field. We show how such optical poling technique can be engineered to provide efficient SH generation across the whole C and L telecom bands, in a reconfigurable fashion, overcoming the need for poling electrodes. Our device operates with milliwatt-level pumping and outputs SH power exceeding 2 mW, for an efficiency as high as 280%/W under electrical driving. Our findings suggest that standalone, highly-coherent, and efficient SH sources can be integrated in current silicon nitride photonics, unlocking the potential of χ(2) processes in the next generation of integrated photonic devices.

4.
Phys Rev Lett ; 131(14): 143802, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862661

RESUMO

Quasi-phase-matching for efficient backward second-harmonic generation requires sub-µm poling periods, a nontrivial fabrication feat. For the first time, we report integrated first-order quasiphase-matched backward second-harmonic generation enabled by seeded all-optical poling. The self-organized grating inscription circumvents all fabrication challenges. We compare backward and forward processes and explain how grating period influences the conversion efficiency. These results showcase unique properties of the coherent photogalvanic effect and how it can bring new nonlinear functionalities to integrated photonics.

5.
Opt Express ; 31(11): 18356-18364, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381548

RESUMO

We present a cost-effective electro-optic frequency comb generation and equalization method using a single phase modulator inserted in a Sagnac interferometer layout. The equalization relies on the interference of comb lines generated in both clockwise and counter-clockwise directions. Such a system is capable of providing flat-top combs with flatness values comparable with other approaches proposed in literature, yet offering a simplified synthesis and reduced complexity. The frequency range of operation at hundreds of MHz renders this scheme particularly interesting for some sensing and spectroscopy applications.

6.
Opt Express ; 31(9): 14442-14453, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157308

RESUMO

All-optical poling enables reconfigurable and efficient quasi-phase-matching for second-order parametric frequency conversion in silicon nitride integrated photonics. Here, we report broadly tunable milliwatt-level second-harmonic generation in a small free spectral range silicon nitride microresonator, where the pump and its second-harmonic are both always on the fundamental mode. By carefully engineering the light coupling region between the bus and microresonator, we simultaneously achieve critical coupling of the pump as well as efficient extraction of second-harmonic light from the cavity. Thermal tuning of second-harmonic generation is demonstrated with an integrated heater in a frequency grid of 47 GHz over a 10 nm band.

7.
Nanophotonics ; 12(7): 1199-1244, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36969949

RESUMO

Frequency conversion in nonlinear materials is an extremely useful solution to the generation of new optical frequencies. Often, it is the only viable solution to realize light sources highly relevant for applications in science and industry. In particular, supercontinuum generation in waveguides, defined as the extreme spectral broadening of an input pulsed laser light, is a powerful technique to bridge distant spectral regions based on single-pass geometry, without requiring additional seed lasers or temporal synchronization. Owing to the influence of dispersion on the nonlinear broadening physics, supercontinuum generation had its breakthrough with the advent of photonic crystal fibers, which permitted an advanced control of light confinement, thereby greatly improving our understanding of the underlying phenomena responsible for supercontinuum generation. More recently, maturing in fabrication of photonic integrated waveguides has resulted in access to supercontinuum generation platforms benefiting from precise lithographic control of dispersion, high yield, compact footprint, and improved power consumption. This Review aims to present a comprehensive overview of supercontinuum generation in chip-based platforms, from underlying physics mechanisms up to the most recent and significant demonstrations. The diversity of integrated material platforms, as well as specific features of waveguides, is opening new opportunities, as will be discussed here.

8.
Commun Phys ; 6(1): 249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665401

RESUMO

Temporal Talbot effect, the intriguing phenomenon of the self-imaging of optical pulse trains, is extensively investigated using macroscopic components. However, the ability to manipulate pulse trains, either bright or dark, through the Talbot effect on integrated photonic chips to replace bulky instruments has rarely been reported. Here, we design and experimentally demonstrate a proof-of-principle integrated silicon nitride device capable of imprinting the Talbot phase relation onto in-phase optical combs and generating the two-fold self-images at the output. We show that the GHz-repetition-rate bright and dark pulse trains can be doubled without affecting their spectra as a key feature of the temporal Talbot effect. The designed chip can be electrically tuned to switch between pass-through and repetition-rate-multiplication outputs and is compatible with other related frequencies. The results of this work lay the foundations for the large-scale system-on-chip photonic integration of Talbot-based pulse multipliers, enabling the on-chip flexible up-scaling of pulse trains' repetition rate without altering their amplitude spectra.

9.
Sci Adv ; 8(50): eadd8252, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516262

RESUMO

Silicon nitride (Si3N4) is an ever-maturing integrated platform for nonlinear optics but mostly considered for third-order [χ(3)] nonlinear interactions. Recently, second-order [χ(2)] nonlinearity was introduced into Si3N4 via the photogalvanic effect, resulting in the inscription of quasi-phase-matched χ(2) gratings. However, the full potential of the photogalvanic effect in microresonators remains largely unexplored for cascaded effects. Here, we report combined χ(2) and χ(3) nonlinear effects in a normal dispersion Si3N4 microresonator. We demonstrate that the photo-induced χ(2) grating also provides phase-matching for the sum-frequency generation process, enabling the initiation and successive switching of primary combs. In addition, the doubly resonant pump and second-harmonic fields allow for effective third-harmonic generation, where a secondary optically written χ(2) grating is identified. Last, we reach a broadband microcomb state evolved from the sum-frequency-coupled primary comb. These results expand the scope of cascaded effects in microresonators.

10.
ACS Photonics ; 9(10): 3374-3383, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36281331

RESUMO

Stoichiometric silicon nitride (Si3N4) is one of the most mature integrated photonic platforms for linear and nonlinear optical applications on-chip. However, because it is a centrosymmetric material, second-order nonlinear processes are inherently not available in Si3N4, limiting its use for multiple classical and quantum applications. In this work, we implement thermally assisted electric-field poling, which allows charge carrier separation in the waveguide core, leading to a depletion zone formation and the inscription of a strong electric field reaching 20 V/µm. The latter results in an effective second-order susceptibility (χ(2)) inside the Si3N4 waveguide, making linear electro-optic modulation accessible on the platform for the first time. We develop a numerical model for simulating the poling process inside the waveguide and use it to calculate the diffusion coefficient and the concentration of the charge carriers responsible for the field formation. The charge carrier concentration, as well as the waveguide core size, is found to play a significant role in determining the achievable effective nonlinearity experienced by the optical mode inside the waveguide. Current findings establish a strong groundwork for further advancement of χ(2)-based devices on Si3N4.

11.
Opt Lett ; 47(20): 5348-5351, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240359

RESUMO

Achieving the regime of single-photon nonlinearities in photonic devices by just exploiting the intrinsic high-order susceptibilities of conventional materials would open the door to practical semiconductor-based quantum photonic technologies. Here we show that this regime can be achieved in a triply resonant integrated photonic device made of two coupled ring resonators, in a material platform displaying an intrinsic third-order nonlinearity. By strongly driving one of the three resonances of the system, a weak coherent probe at one of the others results in a strongly suppressed two-photon probability at the output, evidenced by an antibunched second-order correlation function at zero-time delay under continuous wave driving.

12.
Opt Express ; 30(7): 11298-11305, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473077

RESUMO

Integrated entangled photon-pair sources are key elements for enabling large-scale quantum photonic solutions and address the challenges of both scaling-up and stability. Here we report the first demonstration of an energy-time entangled photon-pair source based on spontaneous parametric down-conversion in silicon-based platform-stoichiometric silicon nitride (Si3N4)-through an optically induced second-order (χ(2)) nonlinearity, ensuring type-0 quasi-phase-matching of fundamental harmonic and its second-harmonic inside the waveguide. The developed source shows a coincidence-to-accidental ratio of 1635 for 8 µW pump power. We report two-photon interference with remarkable near-perfect visibility of 99.36±1.94%, showing high-quality photonic entanglement without excess background noise. This opens a new horizon for quantum technologies requiring the integration of a large variety of building functionalities on a single chip.

13.
Opt Lett ; 47(8): 2085-2088, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427343

RESUMO

We report the development of a widely tunable mode-locked thulium-doped fiber laser based on a robust chirped fiber Bragg grating (CFBG). By applying mechanical tension and compression to the CFBG, an overall tunability of 20.1 nm, spanning from 2022.1 nm to 2042.2 nm, was achieved. The observed mode-locked pulse train from this fiber laser has a repetition rate of 9.4 MHz with an average power of 12.6 dBm and a pulse duration between 9.0 ps and 12.8 ps, depending on the central wavelength. To the best of our knowledge, this is the first demonstration of a tunable mode-locked thulium-doped fiber laser operating beyond 2 µm using a CFBG as a wavelength-selective element.

14.
Opt Express ; 30(3): 4342-4350, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209672

RESUMO

We experimentally demonstrate broadband degenerate continuous-wave four-wave mixing in long silicon nitride (Si3N4) waveguides for operation both in the telecommunication L-band and the thulium band near 2 µm by leveraging polarization dependence of the waveguide dispersion. Broadband conversion is typically demonstrated in short milimeter long waveguides as the bandwidth is linked to the interaction length. This makes it challenging to simultaneously push bandwidth and efficiency, imposing stringent constraints on dispersion engineering. In this work, we show conversion bandwidths larger than 150 nm in the L-band when pumping in the transverse magnetic (TM) mode and larger than 120 nm at 2 µm when using transverse electric excitation, despite the use of 0.5 m long waveguides. In addition, we also show how extreme polarization selectivity can be leveraged in a single waveguide to enable switchable distant phase-matching based on higher-order dispersion. Relying on this approach, we demonstrate the selective conversion of light from the telecom band to the O-band for TM polarization or to the mid-infrared light up to 2.5 µm in TE. Our experiments are in excellent agreement with simulations, showing the high potential of the platform for broadband and distant conversion beyond the telecom band.

15.
Opt Lett ; 47(4): 953-956, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167567

RESUMO

The temporal Talbot effect describes the periodic self-imaging of an optical pulse train along dispersive propagation. This is well studied in the context of bright pulse trains, where identical or multiplied pulse trains with uniform bright waveforms can be created. However, the temporal self-imaging has remained unexplored in the dark pulse regime. Here, we disclose such a phenomenon for optical dark pulse trains, and discuss the comparison with their bright pulse counterparts. It is found that the dark pulse train also revives itself at the Talbot length. For higher-order fractional self-imaging, a mixed pattern of bright and dark pulses is observed, as a result of the interference between the Talbot pulses and the background. Such unconventional behaviors are theoretically predicted and experimentally demonstrated by using programmable spectral shaping as well as by optical fiber propagation.

16.
Opt Express ; 29(14): 21348-21357, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265924

RESUMO

We experimentally demonstrate the generation of a short-wave infrared supercontinuum in an uncladded silicon nitride (Si3N4) waveguide with extreme polarization sensitivity at the pumping wavelength of 2.1 µm. The air-clad waveguide is specifically designed to yield anomalous dispersion regime for transverse electric (TE) mode excitation and all-normal-dispersion (ANDi) at near-infrared wavelengths for the transverse magnetic (TM) mode. Dispersion engineering of the polarization modes allows for switching via simple adjustment of the input polarization state from an octave-spanning soliton fission-driven supercontinuum with fine spectral structure to a flat and smooth ANDi supercontinuum dominated by a self-phase modulation mechanism (SPM). Such a polarization sensitive supercontinuum source offers versatile applications such as broadband on-chip sensing to pulse compression and few-cycle pulse generation. Our experimental results are in very good agreement with numerical simulations.

17.
Nanophotonics ; 10(7): 1923-1930, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880094

RESUMO

Difference-frequency generation (DFG) is elemental for nonlinear parametric processes such as optical parametric oscillation and is instrumental for generating coherent light at long wavelengths, especially in the middle infrared. Second-order nonlinear frequency conversion processes like DFG require a second-order susceptibility χ (2), which is absent in centrosymmetric materials, e.g. silicon-based platforms. All-optical poling is a versatile method for inducing an effective χ (2) in centrosymmetric materials through periodic self-organization of charges. Such all-optically inscribed grating can compensate for the absence of the inherent second-order nonlinearity in integrated photonics platforms. Relying on this induced effective χ (2) in stoichiometric silicon nitride (Si3N4) waveguides, second-order nonlinear frequency conversion processes, such as second-harmonic generation, were previously demonstrated. However up to now, DFG remained out of reach. Here, we report both near- and non-degenerate DFG in all-optically poled Si3N4 waveguides. Exploiting dispersion engineering, particularly rethinking how dispersion can be leveraged to satisfy multiple processes simultaneously, we unlock nonlinear frequency conversion near 2 µm relying on all-optical poling at telecommunication wavelengths. The experimental results are in excellent agreement with theoretically predicted behaviours, validating our approach and opening the way for the design of new types of integrated sources in silicon photonics.

18.
Nat Commun ; 11(1): 4377, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873798

RESUMO

The rapidly maturing integrated Kerr microcombs show significant potential for microwave photonics. Yet, state-of-the-art microcomb-based radiofrequency filters have required programmable pulse shapers, which inevitably increase the system cost, footprint, and complexity. Here, by leveraging the smooth spectral envelope of single solitons, we demonstrate microcomb-based radiofrequency filters free from any additional pulse shaping. More importantly, we achieve all-optical reconfiguration of the radiofrequency filters by exploiting the intrinsically rich soliton configurations. Specifically, we harness the perfect soliton crystals to multiply the comb spacing thereby dividing the filter passband frequencies. Also, the versatile spectral interference patterns of two solitons enable wide reconfigurability of filter passband frequencies, according to their relative azimuthal angles within the round-trip. The proposed schemes demand neither an interferometric setup nor another pulse shaper for filter reconfiguration, providing a simplified synthesis of widely reconfigurable microcomb-based radiofrequency filters.

19.
Sci Rep ; 10(1): 15752, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978442

RESUMO

Most present-day resonant systems, throughout physics and engineering, are characterized by a strict time-reversal symmetry between the rates of energy coupled in and out of the system, which leads to a trade-off between how long a wave can be stored in the system and the system's bandwidth. Any attempt to reduce the losses of the resonant system, and hence store a (mechanical, acoustic, electronic, optical, or of any other nature) wave for more time, will inevitably also reduce the bandwidth of the system. Until recently, this time-bandwidth limit has been considered fundamental, arising from basic Fourier reciprocity. In this work, using a simple macroscopic, fiber-optic resonator where the nonreciprocity is induced by breaking its time-invariance, we report, in full agreement with accompanying numerical simulations, a time-bandwidth product (TBP) exceeding the 'fundamental' limit of ordinary resonant systems by a factor of 30. We show that, although in practice experimental constraints limit our scheme, the TBP can be arbitrarily large, simply dictated by the finesse of the cavity. Our results open the path for designing resonant systems, ubiquitous in physics and engineering, that can simultaneously be broadband and possessing long storage times, thereby offering a potential for new functionalities in wave-matter interactions.

20.
Opt Lett ; 45(8): 2195-2198, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287192

RESUMO

Efficient third-order nonlinear optical processes have been successfully integrated on silicon nitride (Si3N4) waveguides. In particular, owing to Si3N4 wide transparency window spanning from the visible to the middle-infrared (mid-IR), efficient mid-IR dispersive-wave (DW) generation from a fiber laser has been recently demonstrated, and its potential as a source for absorption spectroscopy of a single gas has been established. Here we show that the system can be further engineered to broaden the coverage of a single DW without losing efficiency, as to enable simultaneous and discrete detection of several gas-phase molecules within the 2900 and 3380cm-1 functional group region. We demonstrate quantitative detection of acetylene, methane, and ethane using a simple direct-absorption spectroscopy scheme, achieving a several hundreds of parts-per-million noise-equivalent detection limit with a 5 cm long gas cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA