Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38006127

RESUMO

Tissue engineering is vital in treating injuries and restoring damaged tissues, aiming to accelerate regeneration and optimize the complex healing process. In this study, multizonal scaffolds, designed to mimic tissues with bilayer architecture, were prepared using the rotary jet spinning technique (RJS scaffolds). Polycaprolactone and different concentrations of alginate hydrogel (2, 4, and 6% m/v) were used. The materials were swollen in pracaxi vegetable oil (PO) (Pentaclethra macroloba) and evaluated in terms of surface morphology, wettability, functional groups, thermal behavior, crystallinity, and cytotoxicity. X-ray diffraction (XRD) showed the disappearance of the diffraction peak 2θ = 31.5° for samples from the polycaprolactone/pracaxi/alginate (PCLOA) group, suggesting a reduction of crystallinity according to the presence of PO and semi-crystalline structure. Wettability gradients (0 to 80.91°) were observed according to the deposition layer and hydrogel content. Pore diameters varied between 9.27 µm and 37.57 µm. Molecular interactions with the constituents of the formulation were observed via infrared spectra with Fourier transform (FTIR), and their influence was detected in the reduction of the maximum degradation temperature within the groups of scaffolds (polycaprolactone/alginate (PCLA) and PCLOA) about the control. In vitro tests indicated reduced cell viability in the presence of alginate hydrogel and PO, respectively.

2.
Sci Rep ; 13(1): 20387, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990057

RESUMO

Bone tissue is one of the most important in the human body. In this study, scaffolds of poly (lactic acid) PLA reinforced with hydroxyapatite (HA) and carbon nanotubes (CNT) were manufactured, evaluating their mechanical and biological properties. HA was synthesized by wet method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The scaffolds were produced using additive manufacturing and characterized by optical microscopy, SEM, thermogravimetric analysis (TGA), Raman spectroscopy and biological tests. The SEM results showed that the PLA surface was affected by the incorporation of CNT. TG showed that the incorporation of HA into the polymer matrix compromised the thermal stability of PLA. On the other hand, the incorporation of CNT to the polymer and the impregnation with HA on the surface by thermal effect increased the stability of PLA/CNT scaffolds. Raman spectra indicated that HA impregnation on the surface did not modify the polymer or the ceramic. In the compression tests, PLA and PLA/CNT scaffolds displayed the best compressive strength. In the biological tests, more than 85% of the cells remained viable after 48 h of incubation with all tested scaffolds and groups with CNT in the composition disclosing the best results.


Assuntos
Durapatita , Nanotubos de Carbono , Humanos , Durapatita/química , Poliésteres/química , Polímeros/química , Proliferação de Células , Ácido Láctico/química , Fibroblastos , Alicerces Teciduais/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
BMC Microbiol ; 21(1): 211, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253188

RESUMO

BACKGROUND: Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and presents different clinical manifestations. The adverse effects, immunosuppression and resistant strains associated with this disease necessitate the development of new drugs. Nanoparticles have shown potential as alternative antileishmanial drugs. We showed in a previous study the biosynthesis, characterization and ideal concentration of a nanocomposite that promoted leishmanicidal activity. In the present study, we conducted a specific analysis to show the mechanism of action of AgNP-PVP-MA (silver nanoparticle-polyvinylpyrrolidone-[meglumine antimoniate (Glucantime®)]) nanocomposite during Leishmania amazonensis infection in vitro. RESULTS: Through ultrastructural analysis, we observed significant alterations, such as the presence of small vesicles in the flagellar pocket and in the extracellular membrane, myelin-like structure formation in the Golgi complex and mitochondria, flagellum and plasma membrane rupture, and electrodense material deposition at the edges of the parasite nucleus in both evolutive forms. Furthermore, the Leishmania parasite infection index in macrophages decreased significantly after treatment, and nitric oxide and reactive oxygen species production levels were determined. Additionally, inflammatory, and pro-inflammatory cytokine and chemokine production levels were evaluated. The IL-4, TNF-α and MIP-1α levels increased significantly, while the IL-17 A level decreased significantly after treatment. CONCLUSIONS: Thus, we demonstrate in this study that the AgNP-PVP-MA nanocomposite has leishmanial potential, and the mechanism of action was demonstrated for the first time, showing that this bioproduct seems to be a potential alternative treatment for leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmania/efeitos dos fármacos , Nanocompostos/uso terapêutico , Animais , Células Cultivadas , Técnicas In Vitro , Leishmania/fisiologia , Leishmania/ultraestrutura , Macrófagos/parasitologia , Antimoniato de Meglumina/química , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Povidona/química , Povidona/farmacologia , Povidona/uso terapêutico , Prata/química , Prata/farmacologia , Prata/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA