RESUMO
Phagocytes maintain homeostasis in a healthy brain. Upon injury, they are essential for repairing damaged tissue, recruiting other immune cells, and releasing cytokines as the first line of defense. However, there seems to be a delicate balance between the beneficial and detrimental effects of their activation in a seizing brain. Blocking the infiltration of peripheral phagocytes (macrophages) or their depletion can partially alleviate epileptic seizures and prevent the death of neurons in experimental models of epilepsy. However, the depletion of resident phagocytes in the brain (microglia) can aggravate disease outcomes. This review describes the role of resident microglia and peripheral infiltrating monocytes in animal models of acutely triggered seizures and epilepsy. Understanding the roles of phagocytes in ictogenesis and the time course of their activation and involvement in epileptogenesis and disease progression can offer us new biomarkers to identify patients at risk of developing epilepsy after a brain insult, as well as provide novel therapeutic targets for treating epilepsy.
RESUMO
Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy. One-third of patients have drug-refractory seizures and are left with suboptimal therapeutic options such as brain tissue-destructive surgery. Here, we report the development and characterization of a cell therapy alternative for drug-resistant MTLE, which is derived from a human embryonic stem cell line and comprises cryopreserved, post-mitotic, medial ganglionic eminence (MGE) pallial-type GABAergic interneurons. Single-dose intrahippocampal delivery of the interneurons in a mouse model of chronic MTLE resulted in consistent mesiotemporal seizure suppression, with most animals becoming seizure-free and surviving longer. The grafted interneurons dispersed locally, functionally integrated, persisted long term, and significantly reduced dentate granule cell dispersion, a pathological hallmark of MTLE. These disease-modifying effects were dose-dependent, with a broad therapeutic range. No adverse effects were observed. These findings support an ongoing phase 1/2 clinical trial (NCT05135091) for drug-resistant MTLE.
Assuntos
Epilepsia do Lobo Temporal , Hipocampo , Camundongos , Animais , Humanos , Hipocampo/patologia , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Convulsões/patologia , Convulsões/cirurgia , Interneurônios/fisiologia , Encéfalo/patologiaRESUMO
The administration of drugs to pregnant bitches may not only pose a potential danger to the bitch but also to the fetuses. In this context, the extent of the risk also depends on the stage of gestation. Although a number of agents are known to have a fetotoxic and/or teratogenic potential, insufficient knowledge concerning their potential risk to the embryo/fetus is available for the majority of drugs.Arranged in groups of active substances, a selection of drugs that are assumed to be safe according to the current state of knowledge is provided. Drugs for which there is insufficient knowledge or which are clearly contraindicated are also mentioned.The second part of this overview covers the use of medicines in puppies. The physiology of a puppy does not simply correspond to that of a small dog. Only very few drugs posess valid pharmacological data for use in puppies. However, a subset of restrictions on the use of pharmacologic agents may be derived from the specifics of puppy physiology.The recommendations made do not claim to be complete and no guarantee for accuracy is provided, as these have been compiled from a literature review. In certain cases, the recommendations are even contradictory.Veterinarians are therefore encouraged to report all adverse events associated with treatments of pregnant bitches and puppies within the framework of pharmacovigilance. This is the only way to close gaps in knowledge about the treatment of these special patients.
Assuntos
Preparações Farmacêuticas , Prenhez , Animais , Cães , Feminino , GravidezRESUMO
Since communication skills contribute significantly to professional success among veterinarians, there is a particular focus on developing communication classes in veterinary curricula. At Freie Universität Berlin, an e-learning course covering the basics of communication and a practical communication course based on role plays with and without simulation persons have been established. The outcome of these communication courses on the assessment of the relevance of several veterinary competencies and on the self-assessment of communication skills using the SE-12 questionnaire was investigated. For this purpose, students were surveyed before and after the e-learning course as well as before and after the practical course. Veterinarians were also surveyed on the relevance of veterinary competencies. The relevance of communicative competencies for professional success was rated significantly higher by the students after completing the practical course than by the other students and the veterinarians. Self-assessment of communication skills showed little increase after the e-learning course, but a significant increase after the practical course. Thus, an effective outcome of the communication classes was observed mainly after the practical course. However, the effect of the e-learning course cannot be ruled out since the students participating in the practical course have also completed the e-learning course beforehand.
RESUMO
One of the main causes of epilepsy is an infection of the central nervous system (CNS); approximately 8% of patients who survive such an infection develop epilepsy as a consequence, with rates being significantly higher in less economically developed countries. This work provides an overview of modeling epilepsy of infectious etiology and using it as a platform for novel antiseizure compound testing. A protocol of epilepsy induction by non-stereotactic intracerebral injection of Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6 mice is presented, which replicates many of the early and chronic clinical symptoms of viral encephalitis and subsequent epilepsy in human patients. The clinical evaluation of mice during encephalitis to monitor seizure activity and detect the potential antiseizure effects of novel compounds is described. Furthermore, histopathological consequences of viral encephalitis and seizures such as hippocampal damage and neuroinflammation are shown, as well as long-term consequences such as spontaneous epileptic seizures. The TMEV model is one of the first translational, infection-driven, experimental platforms to allow for the investigation of the mechanisms of epilepsy development as a consequence of CNS infection. Thus, it also serves to identify potential therapeutic targets and compounds for patients at risk of developing epilepsy following a CNS infection.
Assuntos
Encefalite Viral , Epilepsia , Theilovirus , Animais , Modelos Animais de Doenças , Epilepsia/etiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/diagnóstico , Theilovirus/fisiologiaRESUMO
The most researched brain region in epilepsy research is the temporal lobe, and more specifically, the hippocampus. However, numerous other brain regions play a pivotal role in seizure circuitry and secondary generalization of epileptic activity: The substantia nigra pars reticulata (SNr) and its direct input structure, the subthalamic nucleus (STN), are considered seizure gating nuclei. There is ample evidence that direct inhibition of the SNr is capable of suppressing various seizure types in experimental models. Similarly, inhibition via its monosynaptic glutamatergic input, the STN, can decrease seizure susceptibility as well. This review will focus on therapeutic interventions such as electrical stimulation and targeted drug delivery to SNr and STN in human patients and experimental animal models of epilepsy, highlighting the opportunities for overcoming pharmacoresistance in epilepsy by investigating these promising target structures.
RESUMO
In addition to tissues such as liver, the plasma membrane sodium-dependent citrate transporter, NaCT (SLC13A5), is highly expressed in brain neurons, but its function is not understood. Loss-of-function mutations in the human SLC13A5 gene have been associated with severe neonatal encephalopathy and pharmacoresistant seizures. The molecular mechanisms of these neurological alterations are not clear. We performed a detailed examination of a Slc13a5 deletion mouse model including video-EEG monitoring, behavioral tests, and electrophysiologic, proteomic, and metabolomic analyses of brain and cerebrospinal fluid. The experiments revealed an increased propensity for epileptic seizures, proepileptogenic neuronal excitability changes in the hippocampus, and significant citrate alterations in the CSF and brain tissue of Slc13a5 deficient mice, which may underlie the neurological abnormalities. These data demonstrate that SLC13A5 is involved in brain citrate regulation and suggest that abnormalities in this regulation can induce seizures. The present study is the first to (i) establish the Slc13a5-knockout mouse model as a helpful tool to study the neuronal functions of NaCT and characterize the molecular mechanisms by which functional deficiency of this citrate transporter causes epilepsy and impairs neuronal function; (ii) evaluate all hypotheses that have previously been suggested on theoretical grounds to explain the neurological phenotype of SLC13A5 mutations; and (iii) indicate that alterations in brain citrate levels result in neuronal network excitability and increased seizure propensity.
Assuntos
Encéfalo/metabolismo , Ácido Cítrico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Hipocampo/fisiopatologia , Convulsões/metabolismo , Simportadores/genética , Simportadores/metabolismo , Animais , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Convulsões/genéticaRESUMO
Intracerebral infection of C57BL/6 mice with Theiler's murine encephalomyelitis virus (TMEV) replicates many features of viral encephalitis-induced epilepsy in humans, including neuroinflammation, early (insult-associated) and late (spontaneous) seizures, neurodegeneration in the hippocampus, and cognitive and behavioral alterations. Thus, this model may be ideally suited to study mechanisms involved in encephalitis-induced epilepsy as potential targets for epilepsy prevention. However, spontaneous recurrent seizures (SRS) occur too infrequently to be useful as a biomarker of epilepsy, e.g., for drug studies. This prompted us to evaluate whether epileptiform spikes or spike clusters in the cortical electroencephalogram (EEG) may be a useful surrogate of epilepsy in this model. For this purpose, we developed an algorithm that allows efficient and large-scale EEG analysis of early and late seizures, spikes, and spike clusters in the EEG. While 77% of the infected mice exhibited early seizures, late seizures were only observed in 33% of the animals. The clinical characteristics of early and late seizures did not differ except that late generalized convulsive (stage 5) seizures were significantly longer than early stage 5 seizures. Furthermore, the frequency of SRS was much lower than the frequency of early seizures. Continuous (24/7) video-EEG monitoring over several months following infection indicated that the latent period to onset of SRS was 61 (range 16-91) days. Spike and spike clusters were significantly more frequent in infected mice with late seizures than in infected mice without seizures or in mock-infected sham controls. Based on the results of this study, increases in EEG spikes and spike clusters in groups of infected mice may be used as a new readout for studies on antiepileptogenic or disease-modifying drug effects in this model, because the significant increase in average spike counts in mice with late seizures obviously indicates a proepileptogenic alteration.
Assuntos
Eletroencefalografia , Encefalite Viral/complicações , Epilepsia/diagnóstico , Convulsões/diagnóstico , Theilovirus , Algoritmos , Animais , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Epilepsia/virologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/fisiopatologia , Convulsões/virologiaRESUMO
Viral encephalitis is a major risk factor for the development of seizures, epilepsy, and hippocampal damage with associated cognitive impairment, markedly reducing quality of life in survivors. The mechanisms underlying seizures and hippocampal neurodegeneration developing during and after viral encephalitis are only incompletely understood, hampering the development of preventive treatments. Recent findings suggest that brain invasion of blood-born monocytes may be critically involved in both seizures and brain damage in response to encephalitis, whereas the relative role of microglia, the brain's resident immune cells, in these processes is not clear. CCR2 and CX3CR1 are two chemokine receptors that regulate the responses of myeloid cells, such as monocytes and microglia, during inflammation. We used Ccr2-KO and Cx3cr1-KO mice to understand the role of these receptors in viral encephalitis-associated seizures and neurodegeneration, using the Theiler's virus model of encephalitis in C57BL/6 mice. Our results show that CCR2 as well as CX3CR1 plays a key role in the accumulation of myeloid cells in the CNS and activation of hippocampal myeloid cells upon infection. Furthermore, by using Cx3cr1-creER+/-tdTomatoSt/Wt reporter mice, we show that, with regard to CD45 and CD11b expression, some microglia become indistinguishable from monocytes during CNS infection. Interestingly, the lack of CCR2 or CX3CR1 receptors was associated with almost complete prevention of hippocampal damage but did not prevent seizure development after viral CNS infection. These data are compatible with the hypothesis that CNS inflammatory mechanism(s) other than the infiltrating myeloid cells trigger the development of seizures during viral encephalitis.
Assuntos
Receptor 1 de Quimiocina CX3C/imunologia , Encefalite Viral/imunologia , Doenças Neurodegenerativas/imunologia , Receptores CCR2/imunologia , Convulsões/imunologia , Animais , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Modelos Animais de Doenças , Encefalite Viral/patologia , Encefalite Viral/virologia , Feminino , Hipocampo/citologia , Hipocampo/imunologia , Hipocampo/patologia , Humanos , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/imunologia , Microglia/patologia , Monócitos/imunologia , Monócitos/patologia , Doenças Neurodegenerativas/patologia , Neurônios/imunologia , Neurônios/patologia , Receptores CCR2/genética , Convulsões/patologia , Convulsões/virologia , Theilovirus/isolamento & purificaçãoRESUMO
Cell transplantation based therapy is a promising strategy for treating intractable epilepsies. Inhibition of the subthalamic nucleus (STN) or substantia nigra pars reticulata (SNr) is a powerful experimental approach for remote control of different partial seizure types, when targeting the seizure focus is not amenable. Here, we tested the hypothesis that grafting of embryonic/fetal neural precursor cells (NPCs) from various species (rat, human, pig) into STN or SNr of adult rats induces anticonvulsant effects. To rationally refine this approach, we included NPCs derived from the medial ganglionic eminence (MGE) and ventral mesencephalon (VM), both of which are able to develop a GABAergic phenotype. All VM- and MGE-derived cells showed intense migration behavior after grafting into adult rats, developed characteristics of inhibitory interneurons, and survived at least up to 4â¯months after transplantation. By using the intravenous pentylenetetrazole (PTZ) seizure threshold test in adult rats, transient anticonvulsant effects were observed after bilateral grafting of NPCs derived from human and porcine VM into STN, but not after SNr injection (site-specificity). In contrast, MGE-derived NPCs did not cause anticonvulsant effects after grafting into STN or SNr (cell-specificity). Neither induction of status epilepticus by lithium-pilocarpine to induce neuronal damage prior to the PTZ test nor pretreatment of MGE cells with retinoic acid and potassium chloride to increase differentiation into GABAergic neurons could enhance anticonvulsant effectiveness of MGE cells. This is the first proof-of-principle study showing anticonvulsant effects by bilateral xenotransplantation of NPCs into the STN. Our study highlights the value of VM-derived NPCs for interneuron-based cell grafting targeting the STN.
Assuntos
Epilepsia/cirurgia , Mesencéfalo/citologia , Células-Tronco Neurais/transplante , Núcleo Subtalâmico/fisiologia , Animais , Convulsivantes/toxicidade , Modelos Animais de Doenças , Embrião de Mamíferos , Epilepsia/induzido quimicamente , Feto , Glutamato Descarboxilase/metabolismo , Humanos , Eminência Mediana/citologia , Nestina/metabolismo , Pentilenotetrazol/toxicidade , Ratos , Somatostatina/metabolismo , Especificidade da Espécie , Suínos , Tubulina (Proteína)/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
Viral encephalitis is a major risk factor for the development of seizures and epilepsy, but the underlying mechanisms are only poorly understood. Mouse models such as viral encephalitis induced by intracerebral infection with Theiler's virus in C57BL/6 (B6) mice allow advancing our understanding of the immunological and virological aspects of infection-induced seizures and their treatment. Previous studies using the Theiler's virus model in B6 mice have indicated that brain-infiltrating inflammatory macrophages and the cytokines released by these cells are key to the development of acute seizures and hippocampal damage in this model. However, approaches used to prevent or reduce macrophage infiltration were not specific, so contribution of other mechanisms could not be excluded. In the present study, we used a more selective and widely used approach for macrophage depletion, i.e., systemic administration of clodronate liposomes, to study the contribution of macrophage infiltration to development of seizures and hippocampal damage. By this approach, almost complete depletion of monocytic cells was achieved in spleen and blood of Theiler's virus infected B6 mice, which was associated with a 70% decrease in the number of brain infiltrating macrophages as assessed by flow cytometry. Significantly less clodronate liposome-treated mice exhibited seizures than liposome controls (P<0.01), but the development of hippocampal damage was not prevented or reduced. Clodronate liposome treatment did not reduce the increased Iba1 and Mac3 labeling in the hippocampus of infected mice, indicating that activated microglia may contribute to hippocampal damage. The unexpected mismatch between occurrence of seizures and hippocampal damage is thought-provoking and suggests that the mechanisms involved in degeneration of specific populations of hippocampal neurons in encephalitis-induced epilepsy are more complex than previously thought.
Assuntos
Encefalite Viral/imunologia , Encefalite Viral/patologia , Hipocampo/patologia , Macrófagos , Convulsões/imunologia , Animais , Infecções por Cardiovirus/complicações , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/patologia , Movimento Celular/efeitos dos fármacos , Ácido Clodrônico/administração & dosagem , Encefalite Viral/complicações , Lipossomos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , TheilovirusRESUMO
Epilepsy may arise following acute brain insults, but no treatments exist that prevent epilepsy in patients at risk. Here we examined whether a combination of two glutamate receptor antagonists, NBQX and ifenprodil, acting at different receptor subtypes, exerts antiepileptogenic effects in the intrahippocampal kainate mouse model of epilepsy. These drugs were administered over 5 days following kainate. Spontaneous seizures were recorded by video/EEG at different intervals up to 3 months. Initial trials showed that drug treatment during the latent period led to higher mortality than treatment after onset of epilepsy, and further, that combined therapy with both drugs caused higher mortality at doses that appear safe when used singly. We therefore refined the combined-drug protocol, using lower doses. Two weeks after kainate, significantly less mice of the NBQX/ifenprodil group exhibited electroclinical seizures compared to vehicle controls, but this effect was lost at subsequent weeks. The disease modifying effect of the treatment was associated with a transient prevention of granule cell dispersion and less neuronal degeneration in the dentate hilus. These data substantiate the involvement of altered glutamatergic transmission in the early phase of epileptogenesis. Longer treatment with NBQX and ifenprodil may shed further light on the apparent temporal relationship between dentate gyrus reorganization and development of spontaneous seizures.
Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Anticonvulsivantes/farmacologia , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Modelos Animais de Doenças , Esquema de Medicação , Quimioterapia Combinada , Eletroencefalografia , Epilepsia/induzido quimicamente , Epilepsia/diagnóstico , Epilepsia/patologia , Humanos , Ácido Caínico/toxicidade , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Fatores de Tempo , Resultado do TratamentoRESUMO
OBJECTIVE: Incontinentia pigmenti (IP) is a genetic disease leading to severe neurological symptoms, such as epileptic seizures, but no specific treatment is available. IP is caused by pathogenic variants that inactivate the Nemo gene. Replacing Nemo through gene therapy might provide therapeutic benefits. METHODS: In a mouse model of IP, we administered a single intravenous dose of the adeno-associated virus (AAV) vector, AAV-BR1-CAG-NEMO, delivering the Nemo gene to the brain endothelium. Spontaneous epileptic seizures and the integrity of the blood-brain barrier (BBB) were monitored. RESULTS: The endothelium-targeted gene therapy improved the integrity of the BBB. In parallel, it reduced the incidence of seizures and delayed their occurrence. Neonate mice intravenously injected with the AAV-BR1-CAG-NEMO vector developed no hepatocellular carcinoma or other major adverse effects 11 months after vector injection, demonstrating that the vector has a favorable safety profile. INTERPRETATION: The data show that the BBB is a target of antiepileptic treatment and, more specifically, provide evidence for the therapeutic benefit of a brain endothelial-targeted gene therapy in IP. Ann Neurol 2017;82:93-104.
Assuntos
Terapia Genética , Incontinência Pigmentar/terapia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Convulsões/terapia , Animais , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Dependovirus , Feminino , Vetores Genéticos/efeitos adversos , Humanos , Incontinência Pigmentar/complicações , Masculino , Camundongos , Camundongos Knockout , Permeabilidade , Convulsões/complicaçõesRESUMO
Following intracerebral inoculation, the BeAn 8386 strain of Theiler's virus causes persistent infection and inflammatory demyelinating encephalomyelitis in the spinal cord of T-cell defective SJL/J mice, which is widely used as a model of multiple sclerosis. In contrast, C57BL/6 (B6) mice clear the virus and develop inflammation and lesions in the hippocampus, associated with acute and chronic seizures, representing a novel model of viral encephalitis-induced epilepsy. Here we characterize the geno- and phenotype of two naturally occurring variants of BeAn (BeAn-1 and BeAn-2) that can be used to further understand the viral and host factors involved in the neuropathogenesis in B6 and SJL/J mice. Next generation sequencing disclosed 15 single nucleotide differences between BeAn-1 and BeAn-2, of which 4 are coding changes and 3 are in the 5'-UTR (5'-untranslated region). The relatively minor variations in the nucleotide sequence of the two BeAn substrains led to marked differences in neurovirulence. In SJL/J mice, inflammatory demyelination in the spinal cord and its clinical consequences were significantly more marked following infection with BeAn-1 than with BeAn-2. Both BeAn substrains caused lymphocyte infiltration and increase of MAC3-positive cells in the hippocampus, but hippocampal damage and seizures were only observed in B6 mice. Seizures occurred in one third of BeAn-2 infected B6 mice, but not in BeAn-1 infected B6 mice. By comparing individual mice by receiver operating characteristic (ROC) curve analysis, the severity of hippocampal neurodegeneration and amount of MAC3-positive microglia/macrophages discriminated seizing from non-seizing B6 mice, whereas T-lymphocyte brain infiltration was not found to be a crucial factor. These data add novel evidence to the view that differential outcome of infection may be not invariably linked to a distinct viral burden but to a finely tuned balance between antiviral immune responses that although essential for host resistance can also contribute to immunopathology.
Assuntos
Encefalite Viral/patologia , Encefalomielite Aguda Disseminada/patologia , Epilepsia/patologia , Esclerose Múltipla/patologia , Theilovirus , Animais , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Encefalite Viral/imunologia , Encefalite Viral/virologia , Encefalomielite Aguda Disseminada/imunologia , Encefalomielite Aguda Disseminada/virologia , Epilepsia/imunologia , Epilepsia/virologia , Feminino , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Viral/metabolismo , Especificidade da Espécie , Theilovirus/genética , Theilovirus/patogenicidade , VirulênciaRESUMO
In rodent models in which status epilepticus (SE) is used to induce epilepsy, typically most animals develop spontaneous recurrent seizures (SRS). The SE duration for induction of epileptogenesis depends on the type of SE induction. In models with electrical SE induction, the minimum duration of SE to induce epileptogenesis in >90% of animals ranges from 3-4h. A high incidence of epilepsy is an advantage in the search of antiepileptogenic treatments, whereas it is a disadvantage in the search for biomarkers of epileptogenesis, because it does not allow a comparison of potential biomarkers in animals that either develop or do not develop epilepsy. The aim of this project was the refinement of an established SE rat model so that only ~50% of the animals develop epilepsy. For this purpose, we used an electrical model of SE induction, in which a self-sustained SE develops after prolonged stimulation of the basolateral amygdala. Previous experiments had shown that the majority of rats develop SRS after 4-h SE in this model so that the SE reduced duration to 2.5h by administering diazepam. This resulted in epilepsy development in only 50% of rats, thus reaching the goal of the project. The latent period to onset of SRS wa s >2weeks in most rats. Development of epilepsy could be predicted in most rats by behavioral hyperexcitability, whereas seizure threshold did not differentiate rats that did and did not develop SRS. The refined SE model may offer a platform to identify and validate biomarkers of epileptogenesis.
Assuntos
Biomarcadores , Estado Epiléptico/etiologia , Estado Epiléptico/fisiopatologia , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Feminino , Ratos , Ratos Sprague-DawleyRESUMO
Infections, particularly those caused by viruses, are among the main causes of acquired epilepsy, but the mechanisms causing epileptogenesis are only poorly understood. As a consequence, no treatment exists for preventing epilepsy in patients at risk. Animal models are useful to study epileptogenesis after virus-induced encephalitis and how to interfere with this process, but most viruses that cause encephalitis in rodents are associated with high mortality, so that the processes leading to epilepsy cannot be investigated. Recently, intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6 (B6) mice was reported to induce early seizures and epilepsy and it was proposed that the TMEV mouse model represents the first virus infection-driven animal model of epilepsy. In the present study, we characterized this model in two B6 substrains and seizure-resistant SJL/J mice by using three TMEV (sub)strains (BeAn-1, BeAn-2, DA). The idea behind this approach was to study what is and what is not necessary for development of acute and late seizures after brain infection in mice. Receiver operating characteristic (ROC) curve analysis was used to determine which virus-induced brain alterations are associated with seizure development. In B6 mice infected with different TMEV virus (sub)strains, the severity of hippocampal neurodegeneration, amount of MAC3-positive microglia/macrophages, and expression of the interferon-inducible antiviral effector ISG15 were almost perfect at discriminating seizing from non-seizing B6 mice, whereas T-lymphocyte brain infiltration was not found to be a crucial factor. However, intense microglia/macrophage activation and some hippocampal damage were also observed in SJL/J mice. Overall, the TMEV model provides a unique platform to study virus and host factors in ictogenesis and epileptogenesis.
Assuntos
Encefalite Viral/patologia , Doenças Neurodegenerativas/patologia , Infecções por Picornaviridae/patologia , Convulsões/patologia , Theilovirus/genética , Animais , Peso Corporal , Eletroencefalografia , Encefalite Viral/etiologia , Encefalite Viral/virologia , Feminino , Hipocampo/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/virologia , Infecções por Picornaviridae/complicações , Convulsões/etiologia , Especificidade da Espécie , Linfócitos T/patologiaRESUMO
The discovery and validation of biomarkers in neurological and neurodegenerative diseases is an important challenge for early diagnosis of disease and for the development of therapeutics. Epilepsy is often a consequence of brain insults such as traumatic brain injury or stroke, but as yet no biomarker exists to predict the development of epilepsy in patients at risk. Given the complexity of epilepsy, it is unlikely that a single biomarker is sufficient for this purpose, but a combinatorial approach may be needed to overcome the challenge of individual variability and disease heterogeneity. The goal of the present prospective study in the lithium-pilocarpine model of epilepsy in rats was to determine the discriminative utility of combinations of phenotypic biomarkers by examining their ability to predict epilepsy. For this purpose, we used a recent model refinement that allows comparing rats that will or will not develop spontaneous recurrent seizures (SRS) after pilocarpine-induced status epilepticus (SE). Potential biomarkers included in our study were seizure threshold and seizure severity in response to timed i.v. infusion of pentylenetetrazole (PTZ) and behavioral alterations determined by a battery of tests during the three weeks following SE. Three months after SE, video/EEG monitoring was used to determine which rats had developed SRS. To determine whether a biomarker or combination of biomarkers performed better than chance at predicting epilepsy after SE, derived data underwent receiver operating characteristic (ROC) curve analyses. When comparing rats with and without SRS and sham controls, the best intergroup discrimination was obtained by combining all measurements, resulting in a ROC area under curve (AUC) of 0.9592 (P<0.01), indicating an almost perfect discrimination or accuracy to predict development of SRS. These data indicate that a combinatorial biomarker approach may overcome the challenge of individual variability in the prediction of epilepsy.
Assuntos
Epilepsia do Lobo Temporal/induzido quimicamente , Lítio/efeitos adversos , Pilocarpina/efeitos adversos , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Animais , Biomarcadores , Encéfalo , Eletroencefalografia , Feminino , Masculino , Pentilenotetrazol/administração & dosagem , Pentilenotetrazol/efeitos adversos , Estudos Prospectivos , Curva ROC , Ratos , Tempo de Reação/efeitos dos fármacos , Estado Epiléptico/fisiopatologiaRESUMO
The pilocarpine rat model, in which status epilepticus (SE) leads to epilepsy with spontaneous recurrent seizures (SRS), is widely used to study the mechanisms of epileptogenesis and develop strategies for epilepsy prevention. SE is commonly interrupted after 30-90min by high-dose diazepam or other anticonvulsants to reduce mortality. It is widely believed that SE duration of 30-60min is sufficient to induce hippocampal damage and epilepsy. However, resistance to diazepam develops during SE, so that an SE that is longer than 30min is difficult to terminate, and SE typically recurs several hours after diazepam, thus forming a bias for studies on epileptogenesis or antiepileptogenesis. We developed a drug cocktail, consisting of diazepam, phenobarbital, and scopolamine that allows complete and persistent SE termination in the lithium-pilocarpine model. A number of novel findings were obtained with this cocktail. (a) In contrast to previous reports with incomplete SE suppression, a SE of 60min duration did not induce epilepsy, whereas epilepsy with SRS developed after 90 or 120min SE; (b) by comparing groups of rats with 60 and 90min of SE, development of epilepsy could be predicted by behavioral hyperexcitability and decrease in seizure threshold, indicating that these read-outs are suited as biomarkers of epileptogenesis; (c) CA1 damage was prevented by the cocktail, but rats exhibited cell loss in the dentate hilus, which was related to development of epilepsy. These data demonstrate that the duration of SE needed for induction of epileptogenesis in this model is longer than previously thought.
Assuntos
Anticonvulsivantes/administração & dosagem , Diazepam/administração & dosagem , Fenobarbital/administração & dosagem , Escopolamina/administração & dosagem , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/fisiopatologia , Animais , Modelos Animais de Doenças , Eletrodos Implantados , Eletroencefalografia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Cloreto de Lítio , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Pilocarpina , Polimedicação , Ratos Sprague-Dawley , Convulsões/tratamento farmacológico , Convulsões/patologia , Convulsões/fisiopatologia , Estado Epiléptico/patologia , Fatores de Tempo , Resultado do TratamentoRESUMO
The diuretic bumetanide, which acts by blocking the Na-K-Cl cotransporter (NKCC), is widely used to inhibit neuronal NKCC1, particularly when NKCC1 expression is abnormally increased in brain diseases such as epilepsy. However, bumetanide poorly penetrates into the brain and, in rodents, is rapidly eliminated because of extensive oxidation of its N-butyl sidechain, reducing the translational value of rodent experiments. Inhibition of oxidation by piperonyl butoxide (PBO) has previously been reported to increase the half-life and diuretic activity of bumetanide in rats. Here we studied whether inhibition of bumetanide metabolism by PBO also increases brain levels of bumetanide in rats, and whether this alters pharmacodynamic effects in the kindling model of epilepsy. Furthermore, we studied the effects of PBO in mice. Mice eliminated bumetanide less rapidly than rats (elimination half-life 47 min vs. 13 min). Pretreatment with PBO increased the half-life in mice to average values (70 min) previously determined in humans, and markedly elevated brain levels of bumetanide. In rats, the increase in plasma and brain levels of bumetanide by PBO was less marked than in mice. PBO significantly increased the diuretic activity of bumetanide in rats and, less effectively, in mice. In epileptic mice, bumetanide (with PBO) did not suppress spontaneous seizures. In the rat kindling model, bumetanide (with or without PBO) did not exert anticonvulsant effects on fully kindled seizures, but dose-dependently altered kindling development. These data indicate that PBO offers a simple means to enhance the translational properties of rodent experiments with bumetanide, particularly when using mice.
Assuntos
Encéfalo/efeitos dos fármacos , Bumetanida/uso terapêutico , Diuréticos/uso terapêutico , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Encéfalo/fisiopatologia , Bumetanida/farmacocinética , Bumetanida/farmacologia , Diuréticos/farmacocinética , Diuréticos/farmacologia , Ácido Caínico/toxicidade , Camundongos , Butóxido de Piperonila/farmacologia , Butóxido de Piperonila/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacocinética , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Estado Epiléptico/induzido quimicamenteRESUMO
Neural transplantation of GABA-producing cells into key structures within seizure-suppressing circuits holds promise for medication-resistant epilepsy patients not eligible for resection of the epileptic focus. The substantia nigra pars reticulata (SNr), a basal ganglia output structure, is well known to modulate different seizure types. A recent microinjection study by our group indicated that the subthalamic nucleus (STN), which critically regulates nigral activity, might be a more promising target for focal therapy in epilepsies than the SNr. As a proof of principle, we therefore assessed the anticonvulsant efficacy of bilateral and unilateral allografting of GABA-producing cell lines into the STN using the timed intravenous pentylenetetrazole seizure threshold test, which allows repeated seizure threshold determinations in individual rats. We observed (a) that grafted cells survived up to the end of the experiments, (b) that anticonvulsant effects can be induced by bilateral transplantation into the STN using immortalized GABAergic cells derived from the rat embryonic striatum and cells additionally transfected to obtain higher GABA synthesis than the parent cell line, and (c) that anticonvulsant effects were observed even after unilateral transplantation into the STN. Neither grafting of control cells nor transplantation outside the STN induced anticonvulsant effects, emphasizing the site and cell specificity of the observed anticonvulsant effects. To our knowledge, the present study is the first showing anticonvulsant effects by grafting of GABA-producing cells into the STN. The STN can be considered a highly promising target region for modulation of seizure circuits and, moreover, has the advantage of being clinically established for functional neurosurgery.