Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 236: 179-190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460307

RESUMO

Endothelialized in vitro models for cardiovascular disease have contributed greatly to our current understanding of the complex molecular mechanisms underlying thrombosis. To further elucidate these mechanisms, it is important to consider which fundamental aspects to incorporate into an in vitro model. In this review, we will focus on the design of in vitro endothelialized models of thrombosis. Expanding our understanding of the relation and interplay between the different pathways involved will rely in part on complex models that incorporate endothelial cells, blood, the extracellular matrix, and flow. Importantly, the use of tissue-specific endothelial cells will help in understanding the heterogeneity in thrombotic responses between different vascular beds. The dynamic and complex responses of endothelial cells to different shear rates underlines the importance of incorporating appropriate shear in in vitro models. Alterations in vascular extracellular matrix composition, availability of bioactive molecules, and gradients in concentration and composition of these molecules can all regulate the function of both endothelial cells and perivascular cells. Factors modulating these elements in in vitro models should therefore be considered carefully depending on the research question at hand. As the complexity of in vitro models increases, so can the variability. A bottom-up approach to designing such models will remain an important tool for researchers studying thrombosis. As new techniques are continuously being developed and new pathways are brought to light, research question-dependent considerations will have to be made regarding what aspects of thrombosis to include in in vitro models.


Assuntos
Células Endoteliais , Trombose , Humanos , Células Endoteliais/metabolismo , Endotélio Vascular , Trombose/metabolismo
2.
Front Pharmacol ; 15: 1308686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375032

RESUMO

Introduction: Somatostatin analogues (SSAs) are commonly used in the treatment of hormone hypersecretion in neuroendocrine tumors (NETs), however the extent to which they inhibit proliferation is much discussed. Objective: We studied the antiproliferative effects of novel SSA lanreotide in bronchopulmonary NETs (BP-NETs). We focused on assessing whether pretreating cells with inhibitors for phosphatidylinositol 3-kinase (PI3K) and mammalian target for rapamycin (mTOR) could enhance the antiproliferative effects of lanreotide. Methods: BP-NET cell lines NCI-H720 and NCI-H727 were treated with PI3K inhibitor BYL719 (alpelisib), mTOR inhibitor everolimus and SSA lanreotide to determine the effect on NET differentiation markers, cell survival, proliferation and alterations in cancer-associated pathways. NT-3 cells, previously reported to express somatostatin receptors (SSTRs) natively, were used as control for SSTR expression. Results: SSTR2 was upregulated in NCI-H720 and NT-3 cells upon treatment with BYL719. Additionally, combination treatment consisting of BYL719 and everolimus plus lanreotide tested in NCI-H720 and NCI-H727 led to diminished cell proliferation in a dose-dependent manner. Production of proteins activating cell death mechanisms was also induced. Notably, a multiplexed gene expression analysis performed on NCI-H720 revealed that BYL719 plus lanreotide had a stronger effect on the downregulation of mitogens than lanreotide alone. Discussion/Conclusion: We report a widespread analysis of changes in BP-NET cell lines at the genetic/protein expression level in response to combination of lanreotide with pretreatment consisting of BYL719 and everolimus. Interestingly, SSTR expression reinduction could be exploited in therapeutic and diagnostic applications. The overall results of this study support the evaluation of combination-based therapies using lanreotide in preclinical studies to further increase its antiproliferative effect and ultimately facilitate its use in high-grade tumors.

3.
Thromb Haemost ; 123(8): 808-839, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36913975

RESUMO

The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of-the-art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i.e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID-19-associated coagulopathy is revisited.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Trombose , Humanos , Anticoagulantes/uso terapêutico , Coagulação Sanguínea , Hemostasia , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Hemorragia/tratamento farmacológico
4.
J Thromb Haemost ; 19(5): 1348-1363, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33687782

RESUMO

INTRODUCTION: Vitamin K antagonists (VKA) and non-vitamin K oral antagonist anticoagulants (NOAC) are used in the clinic to reduce risk of thrombosis. However, they also exhibit vascular off-target effects. The aim of this study is to compare VKA and NOAC on atherosclerosis progression and calcification in an experimental setup. MATERIAL AND METHODS: Female Apoe-/- mice (age 12 weeks) were fed Western-type diet as control or supplemented with dabigatran etexilate or warfarin for 6 or 18 weeks. Vascular calcification was measured in whole aortic arches using µCT and [18 F]-NaF. Atherosclerotic burden was assessed by (immuno)histochemistry. Additionally, in vitro effects of warfarin, thrombin, and dabigatran on primary vascular smooth muscle cells (VSMC) were assessed. RESULTS: Short-term treatment with warfarin promoted formation of atherosclerotic lesions with a pro-inflammatory phenotype, and more rapid plaque progression compared with control and dabigatran. In contrast, dabigatran significantly reduced plaque progression compared with control. Long-term warfarin treatment significantly increased both presence and activity of plaque calcification compared with control and dabigatran. Calcification induced by warfarin treatment was accompanied by increased presence of uncarboxylated matrix Gla protein. In vitro, both warfarin and thrombin significantly increased VSMC oxidative stress and extracellular vesicle release, which was prevented by dabigatran. CONCLUSION: Warfarin aggravates atherosclerotic disease activity, increasing plaque inflammation, active calcification, and plaque progression. Dabigatran lacks undesired vascular side effects and reveals beneficial effects on atherosclerosis progression and calcification. The choice of anticoagulation impacts atherosclerotic disease by differential off target effect. Future clinical studies should test whether this beneficial effect also applies to patients.


Assuntos
Aterosclerose , Fibrilação Atrial , Animais , Anticoagulantes , Aterosclerose/tratamento farmacológico , Dabigatrana , Feminino , Humanos , Camundongos , Vitamina K , Varfarina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA