Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(60): e202302166, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37565666

RESUMO

The internal electronic communication between two or more light-absorbers is fundamental for energy-transport processes, a field of large current interest. Here the intrinsic photophysics of homo- and heterodimers of rhodamine cations were studied where just two methylene units bridge the dyes. Gas-phase experiments were done on frozen molecular ions at cryogenic temperatures using the newly built LUNA2 mass spectroscopy setup in Aarhus. Both absorption (from fluorescence excitation) and dispersed-fluorescence spectra were measured. In the gas phase, there is no dielectric screening from solvent molecules, and the effect of charges on transition energies is maximum. Indeed, bands are redshifted compared to those of monomer dyes due to the electric field that each dye senses from the other in a dimer. Importantly, also, as two chemically identical dyes in a homodimer do not experience the same field along the long axis, each dye has separate absorption. At low temperatures, it is therefore possible to selectively excite one dye. Fluorescence is dominantly from the dye with the lowest transition energy no matter which dye is photoexcited. Hence this work unequivocally demonstrates Förster Resonance Energy Transfer even in homodimers where one dye acts as donor and the other as acceptor.

2.
Phys Chem Chem Phys ; 24(1): 149-155, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34901981

RESUMO

Excited-state dynamics plays a key role for light harvesting and energy transport in photosynthetic proteins but it is nontrivial to separate the intrinsic photophysics of the light-absorbers (chlorophylls) from interactions with the protein matrix. Here we study chlorophyll a (4-coordinate complex) and axially ligated chlorophyll a (5-coordinate complex) isolated in vacuo applying mass spectrometry to shed light on the intrinsic dynamics in the absence of nearby chlorophylls, carotenoids, amino acids, and water molecules. The 4-coordinate complexes are tagged by quaternary ammonium ions while the charge is provided by a formate ligand in the case of 5-coordinate complexes. Regardless of excitation to the Soret band or the Q band, a fast ps decay is observed, which is ascribed to the decay of the lowest excited singlet state either by intersystem crossing (ISC) to nearby triplet states or by excited-state relaxation on the excited-state potential-energy surface. The lifetime of the first excited state is 15 ps with Mg2+ at the chlorophyll center, but only 1.7 ps when formate is attached to Mg2+. When the Soret band is excited, an initial sup-ps relaxation is observed which is ascribed to fast internal conversion to the first excited state. With respect to ISC, two factors seem to play a role for the reduced lifetime of the formate-chlorophyll complex: (i) The Mg ion is pulled out of the porphyrin plane thus reducing the symmetry of the chromophore, and (ii) the first excited state (Q band) and T3 are tuned almost into resonance by the ligand, which increases the singlet-triplet mixing.


Assuntos
Clorofila A/metabolismo , Teoria Quântica , Clorofila A/química , Clorofila A/isolamento & purificação , Ligantes , Espectrometria de Massas
3.
J Chem Phys ; 155(12): 124304, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598549

RESUMO

Incorporation of fluorescent proteins into biochemical systems has revolutionized the field of bioimaging. In a bottom-up approach, understanding the photophysics of fluorescent proteins requires detailed investigations of the light-absorbing chromophore, which can be achieved by studying the chromophore in isolation. This paper reports a photodissociation action spectroscopy study on the deprotonated anion of the red Kaede fluorescent protein chromophore, demonstrating that at least three isomers-assigned to deprotomers-are generated in the gas phase. Deprotomer-selected action spectra are recorded over the S1 ← S0 band using an instrument with differential mobility spectrometry coupled with photodissociation spectroscopy. The spectrum for the principal phenoxide deprotomer spans the 480-660 nm range with a maximum response at ≈610 nm. The imidazolate deprotomer has a blue-shifted action spectrum with a maximum response at ≈545 nm. The action spectra are consistent with excited state coupled-cluster calculations of excitation wavelengths for the deprotomers. A third gas-phase species with a distinct action spectrum is tentatively assigned to an imidazole tautomer of the principal phenoxide deprotomer. This study highlights the need for isomer-selective methods when studying the photophysics of biochromophores possessing several deprotonation sites.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/isolamento & purificação , Análise Espectral , Ânions/análise , Ânions/química , Ânions/isolamento & purificação , Isomerismo , Proteínas Luminescentes/análise , Proteína Vermelha Fluorescente
4.
J Chem Phys ; 155(4): 044305, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34340366

RESUMO

The spectroscopy and photo-induced dissociation of flavin mononucleotide anions in vacuo are investigated over the 300-500 nm wavelength range. Comparison of the dependence of fragment ion yields as a function of deposited photon energy with calculated dissociation energies and collision-induced dissociation measurements performed under single-collision conditions suggests that a substantial fraction of photo-activated ions decompose through non-statistical fragmentation pathways. Among these pathways is the dominant photo-induced fragmentation channel, the loss of a fragment identified as formylmethylflavin. The fragment ion specific action spectra reveal electronic transition energies close to those for flavins in solution and previously published gas-phase measurements, although the photo-fragment yield upon excitation of the S2 ← S0 transition appears to be suppressed.

5.
Chemistry ; 27(42): 10875-10882, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34060662

RESUMO

When ionic dyes are close together, the internal Coulomb interaction may affect their photophysics and the energy-transfer efficiency. To explore this, we have prepared triangular architectures of three rhodamines connected to a central triethynylbenzene unit (1,3,5-tris(buta-1,3-diyn-1-yl)benzene) based on acetylenic coupling reactions and measured fluorescence spectra of the isolated, triply charged ions in vacuo. We find from comparisons with previously reported monomer and dimer spectra that while polarization of the π-system causes redshifted emission, the separation between the rhodamines is too large for a Stark shift. This picture is supported by electrostatic calculations on model systems composed of three linear and polarizable ionic dyes in D3h configuration: The electric field that each dye experiences from the other two is too small to induce a dipole moment, both in the ground and the excited state. In the case of heterotrimers that contain either two rhodamine 575 (R575) and one R640 or one R575 and two R640, emission is almost purely from R640 although the polarization of the π-system expectedly diminishes the dipole-dipole interaction.

7.
Angew Chem Int Ed Engl ; 59(47): 20946-20955, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32789933

RESUMO

While many key photophysical features are understood for electronic communication between chromophores in neutral compounds, there is limited information on the effect of charges in practically relevant ionic chromo/fluorophores. Here we have chosen positively charged rhodamines and prepared a selection of homo- and heterodimers with alkyl or π-conjugated, acetylenic bridges. Protonated molecules were transferred as isolated ions to gas phase where there is no solvent screening of charges, and fluorescence spectra were measured with a custom-made ion-trap setup. Our work reveals strong polarization of the π-spacer (induced dipole/quadrupole) when it experiences the electric field from one/ two dyes. Hence, π-spacers provide efficient shielding of charges by reducing the Coulomb interaction, whereas two dye cations polarize each other when connected by an alkyl. The screening influences the Förster resonance energy transfer efficiency that relies on the dipole-dipole interaction.

8.
Chemphyschem ; 20(4): 533-537, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30576051

RESUMO

Being alone or together makes a difference for the photophysics of dyes but for ionic dyes it is difficult to quantify the interactions due to solvent screening and nearby counter ions. Gas-phase luminescence experiments are desirable and now possible based on recent developments in mass spectrometry. Here we present results on tailor-made rhodamine homodimers where two dye cations are separated by methylene linkers, (CH2 )n . In solution the fluorescence is almost identical to that from the monomer whereas the emission from bare cation dimers redshifts with decreasing n. In the absence of screening, the electric field from the charge on one dye is strong enough to polarize the other dye, both in the ground state and in the excited state. An electrostatic model based on symmetric dye responses (equal induced-dipole moments in ground state) captures the underlying physics and demonstrates interaction even at large distances. Our results have possible implications for gas-phase Förster Resonance Energy Transfer.

9.
Chemphyschem ; 19(14): 1686-1690, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29676848

RESUMO

Here we uncover the direct effect of a high electric field on the absorption by the Green Fluorescent Protein chromophore anion isolated in vacuo based on gas-phase action spectroscopy. Betaine is a strong molecular dipole that creates an electric field of ∼70 MV/cm when attached to the ion at the phenolate oxygen, more than half the actual field from the protein matrix and pointing in the same direction. Nevertheless, the shift in absorption is limited (0.08 eV), supporting earlier conclusions, but subject to much debate, that the protein is rather innocent in perturbing the transition energy. The betaine complexes are readily made by electrospray ionization and in contrast to the bare ions, they dissociate after one-photon absorption. Also, electron detachment is not an open channel complicating the bare ion case. As steric constraints are absent in vacuo, the possibility of turning on fluorescence by an electric field can be tested from experiments on complexes with betaine.


Assuntos
Eletricidade , Proteínas de Fluorescência Verde/química , Ânions/química , Estrutura Molecular , Teoria Quântica , Espectrometria de Massas por Ionização por Electrospray
10.
Phys Chem Chem Phys ; 19(36): 24440-24444, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28852762

RESUMO

While the emission spectrum of fluorescein monoanions isolated in vacuo displays a broad and featureless band, that of resorufin, also belonging to the xanthene family, has a sharp band maximum, clear vibronic structure, and experiences a small Stokes shift. Excited-state proton transfer in fluorescein can account for the differences.

11.
Angew Chem Int Ed Engl ; 56(13): 3490-3495, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28111897

RESUMO

A molecule's color is governed by the nature of its electronic transitions. Herein we show that the degree of charge transfer can be assessed by measuring the change in absorption induced by complexation with the betaine zwitterion. Our approach benefits from direct formation of complexes by electrospray of a mixture solution, followed by photodissociation action spectroscopy. We explored two ion groups: 1) No permanent dipole moment due to even charge delocalization (e.g. MnO4- ) and 2) Non-even charge distribution but where the charge according to resonance forms is either delocalized (e.g. oxyluciferin) or located at one site (e.g. m-nitrophenolate, mNP). The maximal shift for ions from (1) was <0.05 eV but as large as 0.3 eV and 0.2 eV for mNP and oxyluciferin. Hence our work supports the notion that oxyluciferin undergoes CT, and that the microenvironment can account for large variation in light emission from insects, ranging from green to red (shift of 0.3 eV).

12.
Rev Sci Instrum ; 87(5): 053103, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250388

RESUMO

A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

13.
Eur J Mass Spectrom (Chichester) ; 21(3): 569-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26307736

RESUMO

The intrinsic spectral properties of the dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch, free of solvent interactions, were investigated both experimentally and theoretically. A quaternary ammonium group was incorporated via an ethylene bridge to allow for the transfer of charged molecules to the gas phase by electrospray ionization, leaving the chromophore part itself neutral. Absorption by the two isomers was identified from ion dissociation (i.e., action spectroscopy) using a home-built sector instrument. Several fragment ions were observed, and dissociation occurred both at the charge tag side chain and at the chromophore unit itself. We measured an absorption band of VHF with a maximum at 430 ± 20 nm (2.9 eV ± 0.1 eV) but no band was discernible for the DHA in the visible region. This shows that little interconversion between the two isomers occurs during the electrospray and the subsequent trapping in an octopole for 25 ms; the latter is needed to produce ion bunches for spectroscopy where a pulsed laser system is used. For comparison, density functional theoretical calculations predicted lowest-energy vertical excitations of 3.33 eV to 3.48 eV for the DHA and 3.02 eV to 3.08 eV for the VHF (the ranges are based on the use of different functionals), which correspond to a maximal deviation between theory and experiment of 0.1 eV in the case of the VHF. The absorption by the bare ions is significantly blue-shifted compared to that by VHF in acetonitrile solution (2.64 eV), but similar within the experimental uncertainty to that by VHF in cyclohexane (2.78 eV); the transition, therefore has a significant charge-transfer character. Finally, we find that the absorption of two photons is needed to cause fragmentation of the VHF on the microsecond time scale, which indicates that prompt fragmentation from the electronically excited state or prior to the intramolecular vibrational redistribution of the excess energy plays no role. This is of particular importance for the use of the photosystem in advanced materials or molecular electronics where high photostability is required to allow for numerous isomerization cycles.

14.
Phys Chem Chem Phys ; 17(39): 25793-8, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25873157

RESUMO

We have performed gas-phase absorption spectroscopy in the Soret-band region of chlorophyll (Chl) a and b tagged by quaternary ammonium ions together with time-dependent density functional theory (TD-DFT) calculations. This band is the strongest in the visible region of metalloporphyrins and an important reporter on the microenvironment. The cationic charge tags were tetramethylammonium, tetrabutylammonium, and acetylcholine, and the dominant dissociation channel in all cases was breakage of the complex to give neutral Chl and the charge tag as determined by photoinduced dissociation mass spectroscopy. Two photons were required to induce fragmentation on the time scale of the experiment (microseconds). Action spectra were recorded where the yield of the tag as a function of excitation wavelength was sampled. These spectra are taken to represent the corresponding absorption spectra. In the case of Chl a we find that the tag hardly influences the band maximum which for all three tags is at 403 ± 5 nm. A smaller band with maximum at 365 ± 10 nm was also measured for all three complexes. The spectral quality is worse in the case of Chl b due to lower ion beam currents; however, there is clear evidence for the absorption being to the red of that of Chl a (most intense peak at 409 ± 5 nm) and also a more split band. Our results demonstrate that the change in the Soret-band spectrum when one peripheral substituent (CH3) is replaced by another (CHO) is an intrinsic effect. First principles TD-DFT calculations agree with our experiments, supporting the intrinsic nature of the difference between Chl a and b and also displaying minimal spectral changes when different charge tags are employed. The deviations between theory and experiment have allowed us to estimate that the Soret-band absorption maxima in vacuo for the neutral Chl a and Chl b should occur at 405 nm and 413 nm, respectively. Importantly, the Soret bands of the isolated species are significantly blueshifted compared to those of solvated Chl and Chl-proteins. The protein microenvironment is certainly not innocent of perturbing the electronic structure of Chls.


Assuntos
Clorofila/química , Compostos de Amônio Quaternário/química , Spinacia oleracea/química , Clorofila A , Espectrometria de Massas
15.
J Phys Chem A ; 118(24): 4256-65, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24874819

RESUMO

The strong UV chromophores thymine (Thy) and uracil (Ura) have identical heteroaromatic rings that only differ by one methyl substituent. While their photophysics has been elucidated in detail, the effect on the excited states of base protonation and single water molecules is less explored. Here we report gas-phase absorption spectra of ThyH(+) and UraH(+) and monohydrated ions and demonstrate that the substituent is not only responsible for spectral shifts but also influences the tautomer distribution, being different for bare and monohydrated ions. Spectra interpretation is aided by calculations of geometrical structures and transition energies. The lowest free-energy tautomer (denoted 178, enol-enol form) accounts for 230-280 nm (ThyH(+)) and 225-270 nm (UraH(+)) bands. ThyH(+) hardly absorbs above 300 nm, whereas a discernible band is measured for UraH(+) (275-320 nm), ascribed to the second lowest free-energy tautomer (138, enol-keto form) comprising a few percent of the UraH(+) population at room temperature. Band widths are similar to those measured of cold ions in support of very short excited-state lifetimes. Attachment of a single water increases the abundance of 138 relative to 178, 138 now clearly present for ThyH(+). 138 resembles more the tautomer present in aqueous solution than 178 does, and 138 may indeed be a relevant transition structure. The band of ThyH(+)(178) is unchanged, that of UraH(+)(178) is nearly unchanged, and that of UraH(+)(138) blue-shifts by about 10 nm. In stark contrast to protonated adenine, more than one solvating water molecule is required to re-establish the absorption of ThyH(+) and UraH(+) in aqueous solution.


Assuntos
Gases/química , Prótons , Timina/química , Uracila/química , Água/química , Adenina/química , Íons , Modelos Químicos , Transição de Fase , Teoria Quântica , Espectrofotometria Ultravioleta , Estereoisomerismo , Temperatura , Termodinâmica
16.
Acc Chem Res ; 47(4): 1417-25, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24673172

RESUMO

In a charge-transfer (CT) transition, electron density moves from one end of the molecule (donor) to the other end (acceptor). This type of transition is of paramount importance in nature, for example, in photosynthesis, and it governs the excitation of several protein biochromophores and luminophores such as the oxyluciferin anion that accounts for light emission from fireflies. Both transition energy and oscillator strength are linked to the coupling between the donor and acceptor groups: The weaker the coupling, the smaller the excitation energy. But a weak coupling necessarily also causes a low oscillator strength possibly preventing direct excitation (basically zero probability in the noncoupling case). The coupling is determined by the actual spacer between the two groups, and whether the spacer acts as an insulator or a conductor. However, it can be difficult or even impossible to distinguish the effect of the spacer from that of local solvent molecules that often cause large solvent shifts due to different ground-state and excited-state stabilization. This calls for gas-phase spectroscopy experiments where absorption by the isolated molecule is identified to unequivocally establish the intrinsic molecular properties with no perturbations from a microenvironment. From such insight, the effect of a protein microenvironment on the CT excited state can be deduced. In this Account, we review our results over the last 5 years from mass spectroscopy experiments using specially designed apparatus on several charged donor-acceptor ions that are based on the nitrophenolate moiety and π-extended derivatives, which are textbook examples of donor-acceptor chromophores. The phenolate oxygen is the donor, and the nitro group is the acceptor. The choice of this system is also based on the fact that phenolate is a common structural motif of biochromophores and luminophores, for example, it is a constituent of the oxyluciferin anion. A presentation of the setups used for gas-phase ion spectroscopy in Aarhus is given, and we address issues of whether double bonds or triple bonds best convey electronic coupling between the phenolate oxygen and the nitro group, the significance of separating the donor and acceptor spatially, the influence of cross-conjugation versus linear conjugation, and along this line ortho versus meta versus para configuration, and not least the effect of a single solvent molecule (water, methanol, or acetonitrile). From systematic studies, a clear picture has emerged that has been supported by high-level calculations of electronically excited states. Our work shows that CC2 coupled-cluster calculations of vertical excitation energies are within 0.2 eV of experimental band maxima, and importantly, that the theoretical method is excellent in predicting the relative order of excitation energies of a series of nitrophenolates. Finally, we discuss future challenges such as following the change in absorption as a function of the number of solvent molecules and when gradually approaching the bulk limit.


Assuntos
Nitrofenóis/química , Análise Espectral/métodos , Compostos de Sulfidrila/química , Acetonitrilas/química , Alcenos/química , Alcinos/química , Lasers de Estado Sólido , Proteínas/química , Solventes/química
17.
Chemphyschem ; 14(18): 4109-13, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24166979

RESUMO

Weakly bound complexes between ferric heme cations and NO were synthesised in the gas phase from ion-molecule reactions, and their absorption measured based on photodissociation yields. The Soret band, which serves as an important marker band for heme-protein spectroscopy, is maximal at 357±5 nm and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily through loss of NO. In contrast to the Q-band region, two-photon absorption was seen in the Soret band despite NO loss only requiring ∼1 eV. A model based on intersystem crossing to a long-lived triplet state where a barrier has to be surmounted is suggested. Finally, we summarise the measured absorption maxima of heme and its complexes with amino acids and NO.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Gases/química , Heme/química , Óxido Nítrico/química , Animais , Cavalos , Metamioglobina/química , Metamioglobina/metabolismo , Espectrofotometria
18.
J Am Chem Soc ; 135(18): 6818-21, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23611585

RESUMO

Many biochromophore anions located within protein pockets display charge-transfer (CT) transitions that are perturbed by the nearby environment, such as water or amino acid residues. These anions often contain the phenolate moiety as the electron donor and an acceptor group that couples to the donor via a π-conjugated system. Here we show using action spectroscopy that single molecules of water, methanol, and acetonitrile cause blue shifts in the electronic transition energy of the bare m-nitrophenolate anion by 0.22, 0.22, and 0.12 eV, respectively (uncertainty of 0.05 eV). These shifts are similar to CC2-predicted ones and are in accordance with the weaker binding to the phenolate end of the ion by acetonitrile in comparison with water and methanol. The nitro acceptor group is almost decoupled from the phenolate donor, and this ion therefore represents a good model for CT excitations of an anion. We found that the shift caused by one acetonitrile molecule is almost half of that experienced in bulk acetonitrile solution, clearly emphasizing the important role played by the microenvironment. In protic solvents, the shifts are larger because of hydrogen bonds to the phenolate oxygen. Finally, but not least, we provide experimental data that serve to benchmark calculations of excited states of ion-solvent complexes.


Assuntos
Acetonitrilas/química , Metanol/química , Nitrofenóis/química , Água/química , Ânions/química , Estrutura Molecular , Solventes/química
19.
J Am Chem Soc ; 135(17): 6485-93, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23557511

RESUMO

A complete understanding of the physics underlying the varied colors of firefly bioluminescence remains elusive because it is difficult to disentangle different enzyme-lumophore interactions. Experiments on isolated ions are useful to establish a proper reference when there are no microenvironmental perturbations. Here, we use action spectroscopy to compare the absorption by the firefly oxyluciferin lumophore isolated in vacuo and complexed with a single water molecule. While the process relevant to bioluminescence within the luciferase cavity is light emission, the absorption data presented here provide a unique insight into how the electronic states of oxyluciferin are altered by microenvironmental perturbations. For the bare ion we observe broad absorption with a maximum at 548 ± 10 nm, and addition of a water molecule is found to blue-shift the absorption by approximately 50 nm (0.23 eV). Test calculations at various levels of theory uniformly predict a blue-shift in absorption caused by a single water molecule, but are only qualitatively in agreement with experiment highlighting limitations in what can be expected from methods commonly used in studies on oxyluciferin. Combined molecular dynamics simulations and time-dependent density functional theory calculations closely reproduce the broad experimental peaks and also indicate that the preferred binding site for the water molecule is the phenolate oxygen of the anion. Predicting the effects of microenvironmental interactions on the electronic structure of the oxyluciferin anion with high accuracy is a nontrivial task for theory, and our experimental results therefore serve as important benchmarks for future calculations.


Assuntos
Vaga-Lumes/metabolismo , Indóis/química , Pirazinas/química , Água/química , Animais , Ânions , Cor , Eletroquímica , Ensaio de Imunoadsorção Enzimática , Luminescência , Espectrometria de Massas , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo
20.
Chemphyschem ; 14(6): 1133-7, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23371843

RESUMO

We report electronic spectra of mass-selected MnO4(-) and MnO4(-)⋅H2O using electronic photodissociation spectroscopy. Bare MnO4(-) fragments by formation of MnO3(-) and MnO2(-), while the hydrated complex predominantly decays by loss of the water molecule. The band in the visible spectral region shows a well-resolved vibrational progression consistent with the excitation of a Mn-O stretching mode. The presence of a single water molecule does not significantly perturb the spectrum of MnO4(-). Comparison with the UV/Vis absorption spectrum of permanganate in aqueous solution shows that complete hydration causes a small blueshift, while theoretical models including a dielectric medium have predicted a redshift. The experimental data can be used as benchmarks for electronic structure theory methods, which usually predict electronic spectra in the absence of a chemical environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA