Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Crohns Colitis ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814351

RESUMO

BACKGROUND AND AIMS: Histologic disease activity in Inflammatory Bowel Disease (IBD) is associated with clinical outcomes and is an important endpoint in drug development. We developed deep learning models for automating histological assessments in IBD. METHODS: Histology images of intestinal mucosa from phase 2 and phase 3 clinical trials in Crohn's disease (CD) and Ulcerative Colitis (UC) were used to train artificial intelligence (AI) models to predict the Global Histology Activity Score (GHAS) for CD and Geboes histopathology score for UC. Three AI methods were compared. AI models were evaluated on held-back testing sets and model predictions were compared against an expert central reader and five independent pathologists. RESULTS: The model based on multiple instance learning and the attention mechanism (SA-AbMILP) demonstrated the best performance among competing models. AI modeled GHAS and Geboes sub-grades matched central readings with moderate to substantial agreement, with accuracies ranging from 65% to 89%. Furthermore, the model was able to distinguish the presence and absence of pathology across four selected histological features with accuracies for colon, in both CD and UC, ranging from 87% to 94% and, for CD ileum, ranging from 76% to 83%. For both CD and UC, and across anatomical compartments (ileum and colon) in CD, comparable accuracies against central readings were found between the model assigned scores and scores by an independent set of pathologists. CONCLUSIONS: Deep learning models based upon GHAS and Geboes scoring systems were effective at distinguishing between the presence and absence of IBD microscopic disease activity.

2.
Stud Health Technol Inform ; 290: 1052-1053, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35673201

RESUMO

Self-supervised methods gain more and more attention, especially in the medical domain, where the number of labeled data is limited. They provide results on par or superior to their fully supervised competitors, yet the difference between information coded by both methods is unclear. This work introduces a novel comparison framework for explaining differences between supervised and self-supervised models using visual characteristics important to the human perceptual system. We apply this framework to models trained for Gleason score and conclude that self-supervised methods are more biased toward contrast and texture transformation than their supervised counterparts. At the same time, supervised methods code more information about the shape.


Assuntos
Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Humanos , Processamento de Imagem Assistida por Computador , Gradação de Tumores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA