Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 103(4): 583-597.e8, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31272828

RESUMO

Analysis of endogenous protein localization, function, and dynamics is fundamental to the study of all cells, including the diversity of cell types in the brain. However, current approaches are often low throughput and resource intensive. Here, we describe a CRISPR-Cas9-based homology-independent universal genome engineering (HiUGE) method for endogenous protein manipulation that is straightforward, scalable, and highly flexible in terms of genomic target and application. HiUGE employs adeno-associated virus (AAV) vectors of autonomous insertional sequences (payloads) encoding diverse functional modifications that can integrate into virtually any genomic target loci specified by easily assembled gene-specific guide-RNA (GS-gRNA) vectors. We demonstrate that universal HiUGE donors enable rapid alterations of proteins in vitro or in vivo for protein labeling and dynamic visualization, neural-circuit-specific protein modification, subcellular rerouting and sequestration, and truncation-based structure-function analysis. Thus, the "plug-and-play" nature of HiUGE enables high-throughput and modular analysis of mechanisms driving protein functions in cellular neurobiology.


Assuntos
Técnicas de Introdução de Genes/métodos , Genômica/métodos , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos/genética , Humanos , Imunoquímica/métodos , Inteínas , Camundongos , Mutagênese Insercional , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteômica , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência do Ácido Nucleico
2.
Science ; 353(6304): 1123-9, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27609886

RESUMO

Inhibitory synapses dampen neuronal activity through postsynaptic hyperpolarization. The composition of the inhibitory postsynapse and the mechanistic basis of its regulation, however, remain poorly understood. We used an in vivo chemico-genetic proximity-labeling approach to discover inhibitory postsynaptic proteins. Quantitative mass spectrometry not only recapitulated known inhibitory postsynaptic proteins but also revealed a large network of new proteins, many of which are either implicated in neurodevelopmental disorders or are of unknown function. Clustered regularly interspaced short palindromic repeats (CRISPR) depletion of one of these previously uncharacterized proteins, InSyn1, led to decreased postsynaptic inhibitory sites, reduced the frequency of miniature inhibitory currents, and increased excitability in the hippocampus. Our findings uncover a rich and functionally diverse assemblage of previously unknown proteins that regulate postsynaptic inhibition and might contribute to developmental brain disorders.


Assuntos
Encefalopatias/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural , Densidade Pós-Sináptica/metabolismo , Proteoma/metabolismo , Animais , Encefalopatias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA