Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 248(7): 612-623, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37300407

RESUMO

Prolonged status epilepticus (SE) can cause brain damage; therefore, treatment must be administered promptly after seizure onset to limit SE duration and prevent neuropathology. Timely treatment of SE is not always feasible; this would be particularly true in a mass exposure to an SE-inducing agent such as a nerve agent. Therefore, the availability of anticonvulsant treatments that have neuroprotective efficacy even if administered with a delay after SE onset is an imperative. Here, we compared the long-term neuropathology resulting from acutely exposing 21-day-old male and female rats to the nerve agent soman, and treating them with midazolam (3 mg/kg) or co-administration of tezampanel (10 mg/kg) and caramiphen (50 mg/kg), at 1 h postexposure (~50 min after SE onset). Midazolam-treated rats had significant neuronal degeneration in limbic structures, mainly at one month postexposure, followed by neuronal loss in the basolateral amygdala and the CA1 hippocampal area. Neuronal loss resulted in significant amygdala and hippocampal atrophy, deteriorating from one to six months postexposure. Rats treated with tezampanel-caramiphen had no evidence of neuropathology, except for neuronal loss in the basolateral amygdala at the six-month timepoint. Anxiety was increased only in the midazolam-treated rats, at one, three, and six months postexposure. Spontaneous recurrent seizures appeared only in midazolam-treated rats, at three and six months postexposure in males and only at six months in females. These findings suggest that delayed treatment of nerve agent-induced SE with midazolam may result in long-lasting or permanent brain damage, while antiglutamatergic anticonvulsant treatment consisting of tezampanel and caramiphen may provide full neuroprotection.


Assuntos
Lesões Encefálicas , Agentes Neurotóxicos , Soman , Estado Epiléptico , Feminino , Ratos , Masculino , Animais , Soman/toxicidade , Soman/uso terapêutico , Midazolam/farmacologia , Midazolam/uso terapêutico , Anticonvulsivantes/efeitos adversos , Agentes Neurotóxicos/efeitos adversos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/patologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Lesões Encefálicas/tratamento farmacológico , Encéfalo/patologia
2.
Exp Biol Med (Maywood) ; 248(7): 596-604, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37208920

RESUMO

Hyperexcitability is a major mechanism implicated in several neuropsychiatric disorders, such as organophosphate-induced status epilepticus (SE), primary epilepsy, stroke, spinal cord injury, traumatic brain injury, schizophrenia, and autism spectrum disorders. Underlying mechanisms are diverse, but a functional impairment and loss of GABAergic inhibitory neurons are common features in many of these disorders. While novel therapies abound to correct for the loss of GABAergic inhibitory neurons, it has been difficult at best to improve the activities of daily living for the majority of patients. Alpha-linolenic acid (ALA) is an essential omega-3 polyunsaturated fatty acid found in plants. ALA exerts pleiotropic effects in the brain that attenuate injury in chronic and acute brain disease models. However, the effect of ALA on GABAergic neurotransmission in hyperexcitable brain regions involved in neuropsychiatric disorders, such as the basolateral amygdala (BLA) and CA1 subfield of the hippocampus, is unknown. Administration of a single dose of ALA (1500 nmol/kg) subcutaneously increased the charge transfer of inhibitory postsynaptic potential currents mediated by GABAA receptors in pyramidal neurons by 52% in the BLA and by 92% in the CA1 compared to vehicle animals a day later. Similar results were obtained in pyramidal neurons from the BLA and CA1 when ALA was bath-applied in slices from naïve animals. Importantly, pretreatment with the high-affinity, selective TrkB inhibitor, k252, completely abolished the ALA-induced increase in GABAergic neurotransmission in the BLA and CA1, suggesting a brain-derived neurotrophic factor (BDNF)-mediated mechanism. Addition of mature BDNF (20 ng/mL) significantly increased GABAA receptor inhibitory activity in the BLA and CA1 pyramidal neurons similar to the results obtained with ALA. ALA may be an effective treatment for neuropsychiatric disorders where hyperexcitability is a major feature.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Humanos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Ácido alfa-Linolênico/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Ratos Sprague-Dawley , Atividades Cotidianas , Transmissão Sináptica/fisiologia , Receptores de GABA-A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA