Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6106, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777512

RESUMO

Neural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages. Here, we study this question in the entorhinal cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computational models. We demonstrate that DG feedback inhibition leverages EC phase information to improve rate-coding, a computation we term phase-to-rate recoding. Our results suggest that it i) supports the conservation of phase information within sparse rate-codes and ii) enhances the efficiency of plasticity in downstream CA3 via increased synchrony. Given the ubiquity of both phase-coding and feedback circuits, our results raise the question whether phase-to-rate recoding is a recurring computational motif, which supports the generation of sparse, synchronous population-rate-codes in areas beyond the DG.


Assuntos
Giro Denteado , Córtex Entorrinal , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Modelos Neurológicos , Hipocampo/fisiologia
2.
Behav Brain Sci ; : 1-68, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37357710

RESUMO

When a measure becomes a target, it ceases to be a good measure. For example, when standardized test scores in education become targets, teachers may start 'teaching to the test', leading to breakdown of the relationship between the measure--test performance--and the underlying goal--quality education. Similar phenomena have been named and described across a broad range of contexts, such as economics, academia, machine-learning, and ecology. Yet it remains unclear whether these phenomena bear only superficial similarities, or if they derive from some fundamental unifying mechanism. Here, we propose such a unifying mechanism, which we label proxy failure. We first review illustrative examples and their labels, such as the 'Cobra effect', 'Goodhart's law', and 'Campbell's law'. Second, we identify central prerequisites and constraints of proxy failure, noting that it is often only a partial failure or divergence. We argue that whenever incentivization or selection is based on an imperfect proxy measure of the underlying goal, a pressure arises which tends to make the proxy a worse approximation of the goal. Third, we develop this perspective for three concrete contexts, namely neuroscience, economics and ecology, highlighting similarities and differences. Fourth, we outline consequences of proxy failure, suggesting it is key to understanding the structure and evolution of goal-oriented systems. Our account draws on a broad range of disciplines, but we can only scratch the surface within each. We thus hope the present account elicits a collaborative enterprise, entailing both critical discussion as well as extensions in contexts we have missed.

3.
Cogn Sci ; 46(9): e13188, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36044007

RESUMO

Many scientists routinely generalize from study samples to larger populations. It is commonly assumed that this cognitive process of scientific induction is a voluntary inference in which researchers assess the generalizability of their data and then draw conclusions accordingly. We challenge this view and argue for a novel account. The account describes scientific induction as involving by default a generalization bias that operates automatically and frequently leads researchers to unintentionally generalize their findings without sufficient evidence. The result is unwarranted, overgeneralized conclusions. We support this account of scientific induction by integrating a range of disparate findings from across the cognitive sciences that have until now not been connected to research on the nature of scientific induction. The view that scientific induction involves by default a generalization bias calls for a revision of the current thinking about scientific induction and highlights an overlooked cause of the replication crisis in the sciences. Commonly proposed interventions to tackle scientific overgeneralizations that may feed into this crisis need to be supplemented with cognitive debiasing strategies against generalization bias to most effectively improve science.


Assuntos
Cognição , Generalização Psicológica , Viés , Ciência Cognitiva , Humanos
4.
R Soc Open Sci ; 9(2): 211030, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35223051

RESUMO

Competitive societal systems by necessity rely on imperfect proxy measures. For instance, profit is used to measure value to consumers, patient volumes to measure hospital performance, or the journal impact factor to measure scientific value. While there are numerous reasons why proxies will deviate from the underlying societal goals, they will nevertheless determine the selection of cultural practices and guide individual decisions. These considerations suggest that the study of proxy-based competition requires the integration of cultural evolution theory and economics or decision theory. Here, we attempt such an integration in two ways. First, we describe an agent-based simulation model, combining methods and insights from these disciplines. The model suggests that an individual intrinsic incentive can constrain a cultural evolutionary pressure, which would otherwise enforce fully proxy-oriented practices. The emergent outcome is distinct from that with either the isolated economic or evolutionary mechanism. It reflects what we term lock-in, where competitive pressure can undermine the ability of agents to pursue the shared social goal. Second, we elaborate the broader context, outlining the system-theoretic foundations as well as some philosophical and practical implications, towards a broader theory. Overall, we suggest such a theory may offer an explanatory and predictive framework for diverse subjects, ranging from scientific replicability to climate inaction, and outlining strategies for diagnosis and mitigation.

5.
Elife ; 102021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33709911

RESUMO

The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep. The properties of these activity patterns at cellular resolution, and their role in hippocampal-dependent memory processes have remained unclear. Using dual-color in vivo two-photon Ca2+ imaging, we show that in immobile mice dentate granule cells generate sparse, synchronized activity patterns associated with entorhinal cortex activation. These population events are structured and modified by changes in the environment; and they incorporate place- and speed cells. Importantly, they are more similar than expected by chance to population patterns evoked during self-motion. Using optogenetic inhibition, we show that granule cell activity is not only required during exploration, but also during immobility in order to form dentate gyrus-dependent spatial memories.


Assuntos
Giro Denteado/fisiologia , Neurônios/fisiologia , Animais , Feminino , Imobilização , Masculino , Camundongos , Neuroimagem , Optogenética
6.
PLoS One ; 15(3): e0229615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160229

RESUMO

Several systematic studies have suggested that a large fraction of published research is not reproducible. One probable reason for low reproducibility is insufficient sample size, resulting in low power and low positive predictive value. It has been suggested that insufficient sample-size choice is driven by a combination of scientific competition and 'positive publication bias'. Here we formalize this intuition in a simple model, in which scientists choose economically rational sample sizes, balancing the cost of experimentation with income from publication. Specifically, assuming that a scientist's income derives only from 'positive' findings (positive publication bias) and that individual samples cost a fixed amount, allows to leverage basic statistical formulas into an economic optimality prediction. We find that if effects have i) low base probability, ii) small effect size or iii) low grant income per publication, then the rational (economically optimal) sample size is small. Furthermore, for plausible distributions of these parameters we find a robust emergence of a bimodal distribution of obtained statistical power and low overall reproducibility rates, both matching empirical findings. Finally, we explore conditional equivalence testing as a means to align economic incentives with adequate sample sizes. Overall, the model describes a simple mechanism explaining both the prevalence and the persistence of small sample sizes, and is well suited for empirical validation. It proposes economic rationality, or economic pressures, as a principal driver of irreproducibility and suggests strategies to change this.


Assuntos
Modelos Econômicos , Reprodutibilidade dos Testes , Tamanho da Amostra , Simulação por Computador , Humanos , Modelos Estatísticos , Probabilidade , Viés de Publicação , Projetos de Pesquisa
7.
Elife ; 92020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32077850

RESUMO

Feedback inhibitory motifs are thought to be important for pattern separation across species. How feedback circuits may implement pattern separation of biologically plausible, temporally structured input in mammals is, however, poorly understood. We have quantitatively determined key properties of netfeedback inhibition in the mouse dentate gyrus, a region critically involved in pattern separation. Feedback inhibition is recruited steeply with a low dynamic range (0% to 4% of active GCs), and with a non-uniform spatial profile. Additionally, net feedback inhibition shows frequency-dependent facilitation, driven by strongly facilitating mossy fiber inputs. Computational analyses show a significant contribution of the feedback circuit to pattern separation of theta modulated inputs, even within individual theta cycles. Moreover, pattern separation was selectively boosted at gamma frequencies, in particular for highly similar inputs. This effect was highly robust, suggesting that frequency-dependent pattern separation is a key feature of the feedback inhibitory microcircuit.


You can probably recall where you left your car this morning without too much trouble. But assuming you use the same busy parking lot every day, can you remember which space you parked in yesterday? Or the day before that? Most people find this difficult not because they cannot remember what happened two or three days ago, but because it requires distinguishing between very similar memories. The car, the parking lot, and the time of day were the same on each occasion. So how do you remember where you parked this morning? This ability to distinguish between memories of similar events depends on a brain region called the hippocampus. A subregion of the hippocampus called the dentate gyrus generates different patterns of activity in response to events that are similar but distinct. This process is called pattern separation, and it helps ensure that you do not look for your car in yesterday's parking space. Pattern separation in the dentate gyrus is thought to involve a form of negative feedback called feedback inhibition, a phenomenon where the output of a process acts to limit or stop the same process. To test this idea, Braganza et al. studied feedback inhibition in the dentate gyrus of mice, before building a computer model simulating the inhibition process and supplying the model with two types of realistic input. The first consisted of low-frequency theta brainwaves, which occur, for instance, in the dentate gyrus when animals explore their environment. The second consisted of higher frequency gamma brainwaves, which occur, for example, when animals experience something new. Testing the model showed that feedback inhibition contributes to pattern separation with both theta and gamma inputs. However, pattern separation is stronger with gamma input. This suggests that high frequency brainwaves in the hippocampus could help animals distinguish new events from old ones by promoting pattern separation. Various brain disorders, including Alzheimer's disease, schizophrenia and epilepsy, involve changes in the dentate gyrus and altered brain rhythms. The current findings could help reveal how these changes contribute to memory impairments and to a reduced ability to distinguish similar experiences.


Assuntos
Retroalimentação Fisiológica/fisiologia , Vias Neurais/fisiologia , Animais , Giro Denteado/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
8.
J Neurosci ; 39(45): 8998-9012, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31519822

RESUMO

Inhibitory interneurons, organized into canonical feedforward and feedback motifs, play a key role in controlling normal and pathological neuronal activity. We demonstrate prominent quantitative changes in the dynamics of feedback inhibition in a rat model of chronic epilepsy (male Wistar rats). Systematic interneuron recordings revealed a large decrease in intrinsic excitability of basket cells and oriens-lacunosum moleculare interneurons in epileptic animals. Additionally, the temporal dynamics of interneuron recruitment by recurrent feedback excitation were strongly altered, resulting in a profound loss of initial feedback inhibition during synchronous CA1 pyramidal activity. Biophysically constrained models of the complete feedback circuit motifs of normal and epileptic animals revealed that, as a consequence of altered feedback inhibition, burst activity arising in CA3 is more strongly converted to a CA1 output. This suggests that altered dynamics of feedback inhibition promote the transmission of epileptiform bursts to hippocampal projection areas.SIGNIFICANCE STATEMENT We quantitatively characterized changes of the CA1 feedback inhibitory circuit in a model of chronic temporal lobe epilepsy. This study shows, for the first time, that dynamic recruitment of inhibition in feedback circuits is altered and establishes the cellular mechanisms for this change. Computational modeling revealed that the observed changes are likely to systematically alter CA1 input-output properties leading to (1) increased seizure propagation through CA1 and (2) altered computation of synchronous CA3 input.


Assuntos
Epilepsia/fisiopatologia , Retroalimentação Fisiológica , Modelos Neurológicos , Inibição Neural , Potenciais de Ação , Animais , Região CA1 Hipocampal/fisiopatologia , Interneurônios/fisiologia , Masculino , Células Piramidais/fisiologia , Ratos , Ratos Wistar
9.
Trends Neurosci ; 41(3): 128-136, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29397990

RESUMO

Modern neuroscientific techniques that specifically manipulate and measure neuronal activity in behaving animals now allow bridging of the gap from the cellular to the behavioral level. However, in doing so, they also pose new challenges. Research using incompletely defined manipulations in a high-dimensional space without clear hypotheses is likely to suffer from multiple well-known conceptual and statistical problems. In this context it is essential to develop hypotheses with testable implications across levels. Here we propose that a focus on circuit motifs can help achieve this goal. Viewing neural structures as an assembly of circuit motif building blocks is not new. However, recent tool advances have made it possible to extensively map, specifically manipulate, and quantitatively investigate circuit motifs and thereby reexamine their relevance to brain function.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Neurociências , Optogenética , Animais , Comportamento/fisiologia , Humanos , Neurônios/fisiologia , Neurociências/métodos , Optogenética/métodos
10.
Neuron ; 90(4): 853-65, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27161528

RESUMO

The neurotransmitter acetylcholine, derived from the medial septum/diagonal band of Broca complex, has been accorded an important role in hippocampal learning and memory processes. However, the precise mechanisms whereby acetylcholine released from septohippocampal cholinergic neurons acts to modulate hippocampal microcircuits remain unknown. Here, we show that acetylcholine release from cholinergic septohippocampal projections causes a long-lasting GABAergic inhibition of hippocampal dentate granule cells in vivo and in vitro. This inhibition is caused by cholinergic activation of hilar astrocytes, which provide glutamatergic excitation of hilar inhibitory interneurons. These results demonstrate that acetylcholine release can cause slow inhibition of principal neuronal activity via astrocyte intermediaries.


Assuntos
Astrócitos/efeitos dos fármacos , Colinérgicos/farmacologia , Hipocampo/citologia , Vias Neurais/fisiologia , Septo do Cérebro/efeitos dos fármacos , Animais , Astrócitos/fisiologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Aprendizagem/fisiologia , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Septo do Cérebro/citologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
11.
J Neurosci ; 35(22): 8394-410, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26041909

RESUMO

The medial septum/diagonal band of Broca complex (MSDB) is a key structure that modulates hippocampal rhythmogenesis. Cholinergic neurons of the MSDB play a central role in generating and pacing theta-band oscillations in the hippocampal formation during exploration, novelty detection, and memory encoding. How precisely cholinergic neurons affect hippocampal network dynamics in vivo, however, has remained elusive. In this study, we show that stimulation of cholinergic MSDB neurons in urethane-anesthetized mice acts on hippocampal networks via two distinct pathways. A direct septo-hippocampal cholinergic projection causes increased firing of hippocampal inhibitory interneurons with concomitantly decreased firing of principal cells. In addition, cholinergic neurons recruit noncholinergic neurons within the MSDB. This indirect pathway is required for hippocampal theta synchronization. Activation of both pathways causes a reduction in pyramidal neuron firing and a more precise coupling to the theta oscillatory phase. These two anatomically and functionally distinct pathways are likely relevant for cholinergic control of encoding versus retrieval modes in the hippocampus.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação/genética , Hipocampo/citologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Channelrhodopsins , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Dependovirus/genética , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/genética , Camundongos , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Estimulação Luminosa , Técnicas Fotoacústicas , Núcleos Septais/fisiologia , Ritmo Teta/genética , Ritmo Teta/fisiologia , Fatores de Tempo , Transdução Genética
12.
Nat Neurosci ; 18(6): 872-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961790

RESUMO

Midbrain ventral tegmental neurons project to the prefrontal cortex and modulate cognitive functions. Using viral tracing, optogenetics and electrophysiology, we found that mesocortical neurons in the mouse ventrotegmental area provide fast glutamatergic excitation of GABAergic interneurons in the prefrontal cortex and inhibit prefrontal cortical pyramidal neurons in a robust and reliable manner. These mesocortical neurons were derived from a subset of dopaminergic progenitors, which were dependent on prolonged Sonic Hedgehog signaling for their induction. Loss of these progenitors resulted in the loss of the mesocortical inhibitory circuit and an increase in perseverative behavior, whereas mesolimbic and mesostriatal dopaminergic projections, as well as impulsivity and attentional function, were largely spared. Thus, we identified a previously uncharacterized mesocortical circuit contributing to perseverative behaviors and found that the diversity of dopaminergic neurons begins to be established during their progenitor phase.


Assuntos
Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiologia , Área Tegmentar Ventral/crescimento & desenvolvimento , Área Tegmentar Ventral/fisiologia , Animais , Atenção/fisiologia , Comportamento Animal/fisiologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Neurônios Dopaminérgicos/fisiologia , Glutamatos/fisiologia , Interneurônios/fisiologia , Camundongos , Optogenética , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia , Recompensa , Área Tegmentar Ventral/citologia , Ácido gama-Aminobutírico/fisiologia
13.
Epilepsia ; 56(2): 234-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25530314

RESUMO

OBJECTIVE: Chronic inflammatory processes are important promotors of temporal lobe epilepsy (TLE) development. Based on human herpesvirus 6 (HHV-6) DNA detection in brain tissue from patients with TLE, an association of persistent viral infection with TLE has been discussed. Individual studies reported increased HHV-6 DNA in patients with clinical signs of previous inflammatory brain reaction, that is, febrile seizures or meningoencephalitis. However, detection rates vary considerably between different studies. Here we performed a large-scale analysis of viral DNA/RNA spectrum in high-quality TLE biopsies. In addition to all Herpesviridae, we addressed potentially relevant neurotropic RNA viruses. METHODS: DNA and RNA were extracted from 346 fresh-frozen tissue samples removed by epilepsy surgery. Real-time polymerase chain reaction (PCR) and nested PCR were performed for Herpesviridae and RNA viruses, respectively. Clinical data were analyzed for earlier signs of inflammatory brain reactions. Fresh-frozen hippocampal tissue samples from patients without chronic central nervous system (CNS) disease served as controls (n = 62). Seven previous PCR studies with overall 178 TLE patients were additionally analyzed regarding a correlation of clinical parameters and HHV-6 detection. RESULTS: PCR revealed HHV-6B DNA in 34 specimens (9.8%) from TLE patients. HHV-6B DNA was also present in eight control samples (12.9%; p > 0.05), but showed a lower virus concentration (p < 0.001). Other herpesviruses and RNA viruses were virtually absent. In patients with clinical signs of previous brain inflammation, HHV-6B DNA was observed in 15.0%, whereas only 6.3% of the samples from patients without febrile seizures or meningoencephalitis were positive for HHV-6B DNA (p < 0.05). A meta-analysis of the eight HHV-6 PCR studies revealed similar results. SIGNIFICANCE: This biopsy-based study shows no differences in frequency of HHV-6B DNA detection between TLE patients and controls. These results do not support the hypothesis of a persistent HHV-6B infection as a major pathogenetic factor in TLE. However, the higher virus load in TLE patients and the increased detection rate of HHV-6B DNA in patients with previous inflammatory brain reactions require further investigations.


Assuntos
DNA Viral/análise , Epilepsia do Lobo Temporal/patologia , Herpesvirus Humano 6/genética , Adolescente , Adulto , Idoso , Biópsia , Epilepsia do Lobo Temporal/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Adulto Jovem
14.
Epilepsia ; 53(11): 1898-906, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22967085

RESUMO

PURPOSE: Dysfunction of the blood-brain barrier (BBB) and albumin extravasation have been suggested to play a role in the etiology of human epilepsy. In this context, dysfunction of glial cells attracts increasing attention. Our study was aimed to analyze in the hippocampus (1) which cell types internalize albumin injected into the lateral ventricle in vivo, (2) whether internalization into astrocytes impacts their coupling and expression of connexin 43 (Cx43), and (3) whether expression of Kir4.1, the predominating astrocytic K(+) channel subunit, is altered by albumin. METHODS: The patch-clamp method was combined with single cell tracer filling to investigate electrophysiologic properties and gap junction coupling (GJC). For cell identification, mice with cell type-specific expression of a fluorescent protein (NG2kiEYFP mice) and immunohistochemistry were employed. Semiquantitative real time polymerase chain reaction (RT-PCR) allowed analysis of Kir4.1 and Cx43 transcript levels. KEY FINDINGS: We show that fluorescently labeled albumin is taken up by astrocytes, NG2 cells, and neurons, with NG2 cells standing out in terms of the quantity of uptake. Within 5 days postinjection (dpi), intracellular albumin accumulation was largely reduced suggesting rapid degradation. Electrophysiologic analysis of astrocytes and NG2 cells revealed no changes in their membrane properties at either time point. However, astrocytic GJC was significantly decreased at 1 dpi but returned to control levels within 5 dpi. We found no changes in hippocampal Cx43 transcript expression, suggesting that other mechanisms account for the observed changes in coupling. Kir4.1 mRNA was regulated oppositely in the CA1 stratum radiatum, with a strong increase at 1 dpi followed by a decrease at 5 dpi. SIGNIFICANCE: The present study demonstrates that extravasal albumin in the hippocampus induces rapid changes of astrocyte function, which can be expected to impair ion and transmitter homeostasis and contribute to hyperactivity and epileptogenesis. Therefore, astrocytes may represent alternative targets for antiepileptic therapeutic approaches.


Assuntos
Astrócitos/metabolismo , Junções Comunicantes/metabolismo , Hipocampo/metabolismo , Albumina Sérica/fisiologia , Animais , Astrócitos/patologia , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/metabolismo , Junções Comunicantes/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Albumina Sérica/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA