Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30763916

RESUMO

A simple phosphoryl quinolone (L) based sensor has been synthesized for the selective recognition of Lu3+ by spectrofluorimetric method. In methanol-water (1:1, v/v), the ligand L exhibits a weak emission peak at 400 nm upon excitation at 280 nm. Upon interaction with various f-metal and other selected metals from s, p, and d-block elements, the fluorescence of L is selectively enhanced in the presence of Lu3+ due to the chelation enhanced fluorescence (CHEF) effects. The quantum yield (φ) of L (φ = 0.063) is enhanced to φ = 0.118 upon chelation with Lu3+ ion. From the titration experiment, the limit of detection (LOD) of sensor L to recognize Lu3+ is estimated down to 24.2 nM, which is much lower than the WHO guidelines (76 µM) in drinking water. The formation of host-guest complexation between L and Lu3+ in 2:1 binding stoichiometry is studied by Job's method and the binding constant is estimated by band fit analysis (logKf = 5.1). Further, the coordination behaviour between L and Lu3+ is well supported by FT-IR, 1H NMR, 13C NMR, 31P NMR, ESI mass spectral data and the theoretical results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA