Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 59(4)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478979

RESUMO

The COVID-19 pandemic has created massive demand for widespread, distributed tools for detecting SARS-CoV-2 genetic material. The hurdles to scalable testing include reagent and instrument accessibility, availability of highly trained personnel, and large upfront investment. Here, we showcase an orthogonal pipeline we call CREST (Cas13-based, rugged, equitable, scalable testing) that addresses some of these hurdles. Specifically, CREST pairs commonplace and reliable biochemical methods (PCR) with low-cost instrumentation, without sacrificing detection sensitivity. By taking advantage of simple fluorescence visualizers, CREST allows a binary interpretation of results. CREST may provide a point-of-care solution to increase the distribution of COVID-19 surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase
2.
Mol Cancer Ther ; 18(4): 823-833, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30824613

RESUMO

Epidermal growth factor receptor (EGFR) ectodomain variants mediating primary resistance or secondary treatment failure in cancer patients treated with cetuximab or panitumumab support the need for more resistance-preventive or personalized ways of targeting this essential pathway. Here, we tested the hypothesis that the EGFR nanobody 7D12 fused to an IgG1 Fc portion (7D12-hcAb) would overcome EGFR ectodomain-mediated resistance because it targets a very small binding epitope within domain III of EGFR. Indeed, we found that 7D12-hcAb bound and inhibited all tested cell lines expressing common resistance-mediating EGFR ectodomain variants. Moreover, we assessed receptor functionality and binding properties in synthetic mutants of the 7D12-hcAb epitope to model resistance to 7D12-hcAb. Because the 7D12-hcAb epitope almost completely overlaps with the EGF-binding site, only position R377 could be mutated without simultaneous loss of receptor functionality, suggesting a low risk of developing secondary resistance toward 7D12-hcAb. Our binding data indicated that if 7D12-hcAb resistance mutations occurred in position R377, which is located within the cetuximab and panitumumab epitope, cells expressing these receptor variants would retain sensitivity to these antibodies. However, 7D12-hcAb was equally ineffective as cetuximab in killing cells expressing the cetuximab/panitumumab-resistant aberrantly N-glycosylated EGFR R521K variant. Yet, this resistance could be overcome by introducing mutations into the Fc portion of 7D12-hcAb, which enhanced immune effector functions and thereby allowed killing of cells expressing this variant. Taken together, our data demonstrate a broad range of activity of 7D12-hcAb across cells expressing different EGFR variants involved in primary and secondary EGFR antibody resistance.


Assuntos
Cetuximab/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Panitumumabe/farmacologia , Domínios Proteicos/genética , Anticorpos de Domínio Único/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/imunologia , Cetuximab/uso terapêutico , Epitopos/química , Epitopos/imunologia , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/química , Imunoglobulina G/genética , Mutação , Panitumumabe/imunologia , Panitumumabe/uso terapêutico , Polimorfismo de Nucleotídeo Único/genética , Domínios Proteicos/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Transdução Genética
3.
Front Oncol ; 9: 1559, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039027

RESUMO

Epidermal growth factor receptor (EGFR) antibodies may have detrimental effects in patients with metastatic colorectal cancer expressing oncogenic Rat sarcoma (RAS). Since a significant number of patients acquire RAS-mediated resistance during EGFR-directed treatment, understanding the molecular mechanism underlying these antibody-mediated tumor-promoting effects is of relevance to design more resistance-preventive treatment approaches. To test this, we set up a Ba/F3 cellular model system transformed to EGFR/RAS dependency to be able to study proliferation, RAS activity as well as MAPK signaling upon inhibition of wild-type RAS isoforms by therapeutic EGFR antibodies. Here, we show that the EGFR antibodies cetuximab and panitumumab induce paradoxical stimulation and enhance proliferation in cells expressing oncogenic RAS (KRAS G12V). These experiments clearly showed that the stimulatory effect is a direct result of the antibody-EGFR interaction leading to prolonged mitogen-activated protein-Kinase (MAPK) signaling. The effect was also induced by antibody-chemotherapy combinations but always depended on simultaneous low-level ligand-dependent EGFR pathway activation. Moreover, we observed significant growth retardation of RAS mutant cells after antibody withdrawal compatible with a drug-addiction phenotype. Our data suggests that EGFR antibodies paradoxically sustain MAPK signaling downstream of oncogenic RAS thereby driving proliferation of RAS mutant tumors or tumor subclones. The observed drug-addiction encourages fixed-duration or liquid-biopsy-guided drug holiday concepts to preventively clear RAS mutant subclones selected under EGFR-directed therapeutic pressure.

4.
Blood ; 129(1): 100-104, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27784674

RESUMO

The CD19 antigen is a promising target for immunotherapy of acute lymphoblastic leukemia (ALL), but CD19- relapses remain a major challenge in about 10% to 20% of patients. Here, we analyzed 4 CD19- ALL relapses after treatment with the CD19/CD3 bispecific T-cell engager (BiTE) blinatumomab. Three were on-drug relapses, with the CD19- escape variant first detected after only 2 treatment courses. In 1 patient, the CD19- clone appeared as a late relapse 19 months after completion of blinatumomab treatment. All 4 cases showed a cellular phenotype identical to the primary diagnosis except for CD19 negativity. This argued strongly in favor of an isolated molecular event and against a common lymphoid CD19- progenitor cell or myeloid lineage shift driving resistance. A thorough molecular workup of 1 of the cases with early relapse confirmed this hypothesis by revealing a disrupted CD19 membrane export in the post-endoplasmic reticulum compartment as molecular basis for blinatumomab resistance.


Assuntos
Antígenos CD19/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Adulto , Idoso , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Western Blotting , Membrana Celular/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transporte Proteico
5.
Cancer Res ; 77(5): 1188-1199, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031227

RESUMO

Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K521 (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K521 was reduced slightly, but ligand-mediated EGFR activation was intact. We found a lack of glycan sialyation on EGFR-K521 that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K521 expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform. Cancer Res; 77(5); 1188-99. ©2016 AACR.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Cetuximab/farmacologia , Receptores ErbB/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Polimorfismo de Nucleotídeo Único , Distribuição Aleatória , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncotarget ; 7(29): 45122-45133, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27281611

RESUMO

The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/patologia , Tolerância a Radiação/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetuximab/farmacologia , Cloridrato de Erlotinib/farmacologia , Neoplasias de Cabeça e Pescoço/genética , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína Supressora de Tumor p53/genética
7.
Blood ; 127(25): 3202-14, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27034429

RESUMO

Multiple myeloma (MM) is a hematological cancer for which immune-based treatments are currently in development. Many of these rely on the identification of highly disease-specific, strongly and stably expressed antigens. Here, we profiled the myeloma B-cell immunome both to explore its predictive role in the context of autologous and allogeneic hematopoietic stem cell transplantation (HSCT) and to identify novel immunotherapeutic targets. We used random peptide phage display, reverse immunization, and next-generation sequencing-assisted antibody phage display to establish a highly myeloma-specific epitope fingerprint targeted by B-cell responses of 18 patients in clinical remission. We found that allogeneic HSCT more efficiently allowed production of myeloma-specific antibodies compared with autologous HSCT and that a highly reactive epitope recognition signature correlated with superior response to treatment. Next, we performed myeloma cell surface screenings of phage-displayed patient transplant immunomes. Although some of the screenings yielded clear-cut surface binders, the majority of screenings did not, suggesting that many of the targeted antigens may in fact not be accessible to the B-cell immune system in untreated myeloma cells. This fit well with the identification of heat-shock proteins as a class of antigens that showed overall the broadest reactivity with myeloma patient sera after allogeneic HSCT and that may be significantly translocated to the cell surface upon treatment as a result of immunogenic cell death. Our data reveal a disease-specific epitope signature of MM that is predictive for response to treatment. Mining of transplant immunomes for strong myeloma surface binders may open up avenues for myeloma immunotherapy.


Assuntos
Mapeamento de Epitopos/métodos , Epitopos/metabolismo , Terapia de Alvo Molecular/métodos , Mieloma Múltiplo/terapia , Proteoma/imunologia , Transplantes/imunologia , Transplantes/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Células HL-60 , Humanos , Imunoterapia/métodos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Proteínas do Mieloma/análise , Proteínas do Mieloma/isolamento & purificação , Biblioteca de Peptídeos , Mapeamento de Peptídeos/métodos , Proteoma/análise
8.
Oncotarget ; 7(28): 42988-42995, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27119512

RESUMO

Resistance to epidermal growth factor receptor (EGFR)-targeted therapy is insufficiently understood in head and neck squamous cell carcinoma (HNSCC), entailing the lack of predictive biomarkers.Here, we studied resistance-mediating EGFR ectodomain and activating RAS mutations by next-generation sequencing (NGS) of cell lines and tumor tissue of cetuximab-naïve patients (46 cases, 12 cell lines), as well as liquid biopsies taken during and after cetuximab/platinum/5-fluorouracil treatment (20 cases). Tumors of cetuximab-naïve patients were unmutated, except for HRAS mutations in 4.3% of patients. Liquid biopsies revealed acquired KRAS, NRAS or HRAS mutations in more than one third of patients after cetuximab exposure. 46% of patients with on-treatment disease progression showed acquired RAS mutations, while no RAS mutations were found in the non-progressive subset of patients, indicating that acquisition of RAS mutant clones correlated significantly with clinical resistance (Chi square p=0.032). The emergence of mutations preceded clinical progression in half of the patients, with a maximum time from mutation detection to clinical progression of 16 weeks.RAS mutations account for acquired resistance to EGFR-targeting in a substantial proportion of HNSCC patients, even though these tumors are rarely mutated at baseline. Liquid biopsies may be used for mutational monitoring to guide treatment decisions.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Cetuximab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Biópsia Líquida/métodos , Proteínas ras/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Fluoruracila/administração & dosagem , GTP Fosfo-Hidrolases/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Proteínas de Membrana/genética , Mutação/efeitos dos fármacos , Platina/administração & dosagem , Proteínas Proto-Oncogênicas p21(ras)/genética
9.
Oncotarget ; 6(14): 12035-47, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26059438

RESUMO

Acquired resistance to epidermal growth factor receptor (EGFR) targeted antibodies represents a clinical challenge in the treatment of gastrointestinal tumors such as metastatic colorectal cancer, but its molecular mechanisms are incompletely understood. We scanned KRAS exon 2/3/4, NRAS exon 2/3/4 and the overlapping epitopes of the EGFR antibodies cetuximab and panitumumab for mutations in pre- and post-treatment tumor tissue of 21 patients with gastrointestinal cancer treated with chemotherapy +/- EGFR antibodies by next-generation sequencing ("tumor tissue" cohort). We describe a novel EGFR exon 12 mutation acquired in tumors of 1 out of 3 patients treated with panitumumab. The EGFR G465R mutation introduces a positive charge within the overlap of the panitumumab and cetuximab epitopes. It abrogates antibody binding and mediates cross-resistance to both antibodies in EGFR G465R-transfected Ba/F3 cells. In circulating tumor DNA from an independent "liquid biopsy" cohort of 27 patients, we found this novel mutation in 1 out of 6 panitumumab-treated cases while about one third of patients show acquired RAS mutations. We show that acquired resistance by epitope-changing mutations also emerges during panitumumab treatment, which can be easily detected by a liquid biopsy approach even before clinical resistance occurs and this may help in tailoring EGFR-targeted therapies.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Cetuximab/uso terapêutico , Receptores ErbB/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Cetuximab/administração & dosagem , Receptores ErbB/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Panitumumabe
10.
Oncotarget ; 5(16): 6647-53, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25138051

RESUMO

Bone homeostasis critically relies on the RANKL-RANK-OPG axis which can be targeted by the fully human monoclonal antibody denosumab in conditions with increased bone resporption such as bone metastases. The binding site and therefore the molecular mechanism by which this antibody inhibits RANKL has not been characterized so far. Here, we used random peptide phage display library screenings to identify the denosumab epitope on RANKL. Alignments of phage derived peptide sequences with RANKL suggested that this antibody recognized a linear epitope between position T233 and Y241. Mutational analysis confirmed the core residues as critical for this interaction. The spatial localization of this epitope on a 3-dimensional model of RANKL showed that it overlapped with the major binding sites of OPG and RANK on RANKL. We conclude that denosumab inhibits RANKL by both functional and molecular mimicry of the natural decoy receptor OPG.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais Humanizados/imunologia , Sítios de Ligação , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/metabolismo , Denosumab , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Humanos , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/imunologia , Ligante RANK/antagonistas & inibidores , Ligante RANK/genética , Ligante RANK/imunologia , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Análise de Sequência de Proteína
11.
Neoplasia ; 14(11): 1023-31, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23226096

RESUMO

Cetuximab and panitumumab, two antibodies targeting the extracellular domain of the epidermal growth factor receptor (EGFR), are of major clinical importance particularly in the treatment of metastatic colorectal cancer. As patients may acquire resistance-mediating mutations within the extracellular EGFR domain, functional dissection of the exact binding sites of EGFR targeting antibodies may help predict treatment responses. We therefore assessed the epitope recognition of panitumumab by screening phage-displayed random cyclic 7mer and linear 12mer peptide libraries on this antibody. Phage screenings revealed two strong, potentially epitope-mimicking consensus motifs targeted by panitumumab. A computational approach was used to map the sequences back to the potential epitope region on domain III of EGFR. The presumed epitope regions (386)WPEXRT(391) and a biochemically similar though discontinuous region P349-F352-D355 on a neighboring loop of domain III could be confirmed as part of the functionally relevant binding site of panitumumab by site-directed mutational analysis. To more accurately differentiate the panitumumab epitope from the previously characterized cetuximab epitope, binding studies were performed on a broad range of additional mutants. Taken together, this analysis revealed two large, partially overlapping functional epitopes consisting of 17 critical amino acid positions. Four of these positions were selectively targeted by cetuximab (I467, S468, Q408, and H409), whereas another four were selectively recognized by panitumumab (W386, E388, R390, and T391). In view of the clinical significance of extracellular domain mutations, our data may help guide treatment decisions in selected patients receiving EGFR-targeted therapies.


Assuntos
Anticorpos Monoclonais/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Receptores ErbB/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Técnicas de Visualização da Superfície Celular , Cetuximab , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Mimetismo Molecular/imunologia , Mutação , Panitumumabe , Biblioteca de Peptídeos , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA