Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Genome Biol ; 24(1): 261, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968726

RESUMO

BACKGROUND: Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus. RESULTS: We show that multiple genes mapping to this region interact to regulate brain anatomy, with female mice exhibiting far fewer brain neuroanatomical phenotypes. In male mice, among the 13 genes associated with neuroanatomical defects (Mvp, Ppp4c, Zg16, Taok2, Slx1b, Maz, Fam57b, Bola2, Tbx6, Qprt, Spn, Hirip3, and Doc2a), Mvp is the top driver implicated in phenotypes pertaining to brain, cortex, hippocampus, ventricles, and corpus callosum sizes. The major vault protein (MVP), the main component of the vault organelle, is a conserved protein found in eukaryotic cells, yet its function is not understood. Here, we find MVP expression highly specific to the limbic system and show that Mvp regulates neuronal morphology, postnatally and specifically in males. We also recapitulate a previously reported genetic interaction and show that Mvp+/-;Mapk3+/- mice exhibit behavioral deficits, notably decreased anxiety-like traits detected in the elevated plus maze and open field paradigms. CONCLUSIONS: Our study highlights multiple gene drivers in neuroanatomical phenotypes, interacting with each other through complex relationships. It also provides the first evidence for the involvement of the major vault protein in the regulation of brain size and neuroanatomy, specifically in male mice.


Assuntos
Transtorno Autístico , Masculino , Animais , Camundongos , Feminino , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Neuroanatomia , Encéfalo/metabolismo , Fenótipo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas do Tecido Nervoso/metabolismo
2.
EMBO Mol Med ; 15(11): e15984, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37792911

RESUMO

Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5-mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2-ERK1/2 interactions.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuroproteção , Animais , Humanos , Camundongos , alfa Carioferinas/farmacologia , Cognição , Fosforilação , Transdução de Sinais
3.
Neuropharmacology ; 240: 109718, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774944

RESUMO

Increased longevity is often associated with age-related conditions. The most common neurodegenerative disorders in the older population are Alzheimer's disease (AD) and Parkinson's disease (PD), associated with progressive neuronal loss leading to functional and cognitive impairments. Although symptomatic treatments are available, there is currently no cure for these conditions. Gut dysbiosis has been involved in the pathogenesis of AD and PD, thus interventions targeting the "gut-brain axis" could potentially prevent or delay these pathologies. Recent evidence suggests that the skeletal muscle and the gut microbiota can affect each other via the "gut-muscle axis". Importantly, cognitive functions in AD and PD patients significantly benefit from physical activity. In this review, we aim to provide a comprehensive picture of the crosstalk between the brain, the skeletal muscle and the gut microbiota, introducing the concept of "gut-muscle-brain axis". Moreover, we discuss human and animal studies exploring the modulatory role of exercise and probiotics on cognition in AD and PD. Collectively, the findings presented here support the potential benefits of physical activity and probiotic supplementation in AD and PD. Further studies will be needed to develop targeted and multimodal strategies, including lifestyle changes, to prevent or delay the course of these pathologies.

4.
Br J Pharmacol ; 180(7): 927-942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34767639

RESUMO

BACKGROUND AND PURPOSE: Regulator of G-protein signalling 4 (RGS4) is a signal transduction protein that accelerates intrinsic GTPase activity of Gαi/o and Gαq subunits, suppressing GPCR signalling. Here, we investigate whether RGS4 modulates nociceptin/orphanin FQ (N/OFQ) opioid (NOP) receptor signalling and if this modulation has relevance for l-Dopa-induced dyskinesia. EXPERIMENTAL APPROACH: HEK293T cells transfected with NOP, NOP/RGS4 or NOP/RGS19 were challenged with N/OFQ and the small-molecule NOP agonist AT-403, using D1-stimulated cAMP levels as a readout. Primary rat striatal neurons and adult mouse striatal slices were challenged with either N/OFQ or AT-403 in the presence of the experimental RGS4 chemical probe, CCG-203920, and D1-stimulated cAMP or phosphorylated extracellular signal regulated kinase 1/2 (pERK) responses were monitored. In vivo, CCG-203920 was co-administered with AT-403 and l-Dopa to 6-hydroxydopamine hemilesioned rats, and dyskinetic movements, striatal biochemical correlates of dyskinesia (pERK and pGluR1 levels) and striatal RGS4 levels were measured. KEY RESULTS: RGS4 expression reduced NOFQ and AT-403 potency and efficacy in HEK293T cells. CCG-203920 increased N/OFQ potency in primary rat striatal neurons and potentiated AT-403 response in mouse striatal slices. CCG-203920 enhanced AT-403-mediated inhibition of dyskinesia and its biochemical correlates, without compromising its motor-improving effects. Unilateral dopamine depletion caused bilateral reduction of RGS4 levels, which was reversed by l-Dopa. l-Dopa acutely up-regulated RGS4 in the lesioned striatum. CONCLUSIONS AND IMPLICATIONS: RGS4 physiologically inhibits NOP receptor signalling. CCG-203920 enhanced NOP responses and improved the antidyskinetic potential of NOP receptor agonists, mitigating the effects of striatal RGS4 up-regulation occurring during dyskinesia expression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Camundongos , Ratos , Humanos , Animais , Levodopa/farmacologia , Analgésicos Opioides , Células HEK293 , Transdução de Sinais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Receptores Opioides/metabolismo , Nociceptina
5.
Neurosci Biobehav Rev ; 142: 104892, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36181925

RESUMO

Here we discuss the role of diverse environmental manipulations affecting cognition with special regard to psychiatric conditions. We present evidence supporting a direct causal correlation between the valence of the environmental stimulation and some psychopathological traits and how the environment influences brain structure and function with special regard to oxidative stress and mitochondrial activity. Increasing experimental evidence supports a role for mitochondrial dysfunctions in neuropsychiatric disorders. Brain mitochondria are considered crucial mediators of allostasis, that is the capability to adapt to stress via a complex interaction between the autonomic, metabolic, and immune systems to maintain cellular homeostasis. In this process, mitochondria act as highly dynamic integrators by sensing and transducing stressors into adaptation mechanisms via metabolic stress mediators, such as glucocorticoids and catecholamines. Alterations in cellular homeostasis induced by chronic stress are thought to predispose to disease by triggering the so-called "mitochondrial allostatic load". This process is characterized by functional and structural changes of the mitochondria, ultimately leading to oxidative stress, inflammation, mitochondrial DNA damage and apoptosis. In this review we discuss the role of diverse environmental manipulations to affect cognition with special regard to psychiatric conditions. How the environment influences brain structure and function, and the interactions between rearing conditions, oxidative stress and mitochondrial activity are fundamental questions that are still poorly understood. As will be discussed, increasing experimental evidence supports a role for mitochondrial dysfunctions in neuropsychiatric disorders. Brain mitochondria are considered crucial mediators of allostasis, that is the capability to adapt to stress via a complex interaction between the autonomic, metabolic, and immune systems to maintain cellular homeostasis. In this process, mitochondria act as highly dynamic integrators by sensing and transducing stressors into adaptation mechanisms via metabolic stress mediators, such as glucocorticoids and catecholamines. Alterations in cellular homeostasis induced by chronic stress are thought to predispose to disease by triggering the so-called "mitochondrial allostatic load". This process is characterized by functional and structural changes of the mitochondria, ultimately leading to oxidative stress, inflammation, mitochondrial DNA damage and apoptosis. The brain requires considerable mitochondrial reserve not only to sustain basal neuronal needs but also to provide increasing energy demands during stress. Consistently with these high energetic requirements, it is reasonable to hypothesise that the brain is particularly vulnerable to mitochondrial defects. Thus, even subtle metabolic alterations might have a substantial impact on cognitive functions. Over the last decade, several experimental evidence supported the hypothesis that a suboptimal mitochondrial function, which could be of genetic origin or acquired following adverse life events, is a key vulnerability factor for stress-related psychopathologies. Chronic psychological stress is a major promoter of anxiety as well as of oxidative damage, as shown in several studies. Recent evidence from mouse models harbouring mutations in mitochondrial genes demonstrated the role of mitochondria in modulating the response to acute psychological stress. However, it has yet to be determined whether mitochondrial dysfunctions are the cause or the consequence of anxiety. In this review, we discuss how adverse psychosocial environments can impact mitochondrial bioenergetics at the molecular level and we gather evidence from several studies linking energy metabolism and stress resilience/vulnerability. Moreover, we review recent findings supporting that metabolic dysfunction can underlie deficits in complex social behaviours. As will be discussed, aberrations in mitochondrial functionality have been found in the nucleus accumbens of highly anxious mice and mediate low social competitiveness. In addition, alterations in sociability can be reversed by enhancing mitochondrial functions. Recent evidence also demonstrated that a specific mutation in mitochondrial DNA, previously linked to autism spectrum disorder, produces autistic endophenotypes in mice by altering respiration chain and reactive oxygen species (ROS) production. Finally, we discuss a "Negative Enrichment" model that can explain some of the psychopathological conditions relevant to humans. Evidence of a direct causal correlation of valence of environmental stimulation and psychopathological traits will be presented, and possible molecular mechanisms that focus on oxidative stress. Collectively, the findings described here have been achieved with a wide set of behavioural and cognitive tasks with translational validity. Thus, they will be useful for future work aimed to elucidate the fine metabolic alterations in psychopathologies and devise novel approaches targeting mitochondria to alleviate these conditions.


Assuntos
Transtorno do Espectro Autista , Disfunção Cognitiva , Humanos , Animais , Camundongos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Estresse Oxidativo/fisiologia , Metabolismo Energético/fisiologia , Encéfalo , Inflamação/metabolismo , Catecolaminas/metabolismo
6.
Front Pharmacol ; 13: 986566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120353

RESUMO

Ras/Raf/MEK/ERK (Ras-ERK) signaling has been demonstrated to play a role in the effects of drugs of abuse such as cocaine and alcohol, but has not been extensively examined in nicotine-related reward behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2), an upstream mediator of the Ras-ERK signaling pathway, on nicotine self-administration (SA) in RasGRF2 KO and WT mice. We first demonstrated that acute nicotine exposure (0.4 mg/kg) resulted in an increase in phosphorylated ERK1/2 (pERK1/2) in the striatum, consistent with previous reports. We also demonstrated that increases in pERK1/2 resulting from acute (0.4 mg/kg) and repeated (0.4 mg/kg, 10 daily injections) exposure to nicotine in WT mice were not present in RasGRF2 KO mice, confirming that RasGRF2 at least partly regulates the activity of the Ras-ERK signaling pathway following nicotine exposure. We then performed intravenous nicotine SA (0.03 mg/kg/infusion for 10 days) in RasGRF2 KO and WT mice. Consistent with a previous report using cocaine SA, RasGRF2 KO mice demonstrated an increase in nicotine SA relative to WT controls. These findings suggest a role for RasGRF2 in the reinforcing effects of nicotine, and implicate the Ras-ERK signaling pathway as a common mediator of the response to drugs of abuse.

7.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34832880

RESUMO

In the last two decades, abnormal Ras (rat sarcoma protein)-ERK (extracellular signal-regulated kinase) signalling in the brain has been involved in a variety of neuropsychiatric disorders, including drug addiction, certain forms of intellectual disability, and autism spectrum disorder. Modulation of membrane-receptor-mediated Ras activation has been proposed as a potential target mechanism to attenuate ERK signalling in the brain. Previously, we showed that a cell penetrating peptide, RB3, was able to inhibit downstream signalling by preventing RasGRF1 (Ras guanine nucleotide-releasing factor 1), a neuronal specific GDP/GTP exchange factor, to bind Ras proteins, both in brain slices and in vivo, with an IC50 value in the micromolar range. The aim of this work was to mutate and improve this peptide through computer-aided techniques to increase its inhibitory activity against RasGRF1. The designed peptides were built based on the RB3 peptide structure corresponding to the α-helix of RasGRF1 responsible for Ras binding. For this purpose, the hydrogen-bond surrogate (HBS) approach was exploited to maintain the helical conformation of the designed peptides. Finally, residue scanning, MD simulations, and MM-GBSA calculations were used to identify 18 most promising α-helix-shaped peptides that will be assayed to check their potential activity against Ras-RasGRF1 and prevent downstream molecular events implicated in brain disorders.

8.
Front Cell Neurosci ; 14: 564106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304241

RESUMO

In the striatum, the input nucleus of the basal ganglia, the extracellular-signal-regulated kinase (ERK) pathway, necessary for various forms of behavioral plasticity, is triggered by the combined engagement of dopamine D1 and ionotropic glutamate receptors. In this study, we investigated the potential crosstalk between glutamatergic, dopaminergic, and brain-derived neurotrophic factor (BDNF)-TrkB inputs to ERK cascade by using an ex vivo model of mouse striatal slices. Our results confirmed that the concomitant stimulation of D1 and glutamate receptors is necessary to activate ERK in striatal medium spiny neurons (MSNs). Moreover, we found that ERK activation is significantly enhanced when BDNF is co-applied either with glutamate or the D1 agonist SKF38393, supporting the idea of possible integration between BDNF, glutamate, and D1R-mediated signaling. Interestingly, ERK activation via BDNF-TrkB is upregulated upon blockade of either AMPAR/NMDAR or D1 receptors, suggesting a negative regulatory action of these two neurotransmitter systems on BDNF-mediated signaling. However, the observed enhancement of ERK1/2 phosphorylation does not result in corresponding downstream signaling changes at the nuclear level. Conversely, the TrkB antagonist cyclotraxin B partially prevents glutamate- and D1-mediated ERK activation. Altogether, these results suggest a complex and unexpected interaction among dopaminergic, glutamatergic, and BDNF receptor systems to modulate the ERK pathway in striatal neurons.

9.
Neurosci Biobehav Rev ; 110: 28-45, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30981451

RESUMO

In this review we discuss the role of environmental and pharmacological treatments to enhance cognition with special regards to neurodevelopmental related disorders and aging. How the environment influences brain structure and function, and the interactions between rearing conditions and gene expression, are fundamental questions that are still poorly understood. We propose a model that can explain some of the discrepancies in findings for effects of environmental enrichment on outcome measures. Evidence of a direct causal correlation of nootropics and treatments that enhanced cognition also will be presented, and possible molecular mechanisms that include neurotrophin signaling and downstream pathways underlying these processes are discussed. Finally we review recent findings achieved with a wide set of behavioral and cognitive tasks that have translational validity to humans, and should be useful for future work on devising appropriate therapies. As will be discussed, the collective findings suggest that a combinational therapeutic approach of environmental enrichment and nootropics could be particularly successful for improving learning and memory in both developmental disorders and normal aging.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Memória/efeitos dos fármacos , Nootrópicos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Humanos , Aprendizagem/efeitos dos fármacos
10.
J Neurosci ; 39(32): 6325-6338, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182637

RESUMO

Ras/Raf/MEK/ERK (Ras-ERK) signaling has been implicated in the effects of drugs of abuse. Inhibitors of MEK1/2, the kinases upstream of ERK1/2, have been critical in defining the role of the Ras-ERK cascade in drug-dependent alterations in behavioral plasticity, but the Ras family of small GTPases has not been extensively examined in drug-related behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 1 (RasGRF1) and 2 (RasGRF2), upstream regulators of the Ras-ERK signaling cascade, on cocaine self-administration (SA) in male mice. We first established a role for Ras-ERK signaling in cocaine SA, demonstrating that pERK1/2 is upregulated following SA in C57BL/6N mice in striatum. We then compared RasGRF1 and RasGRF2 KO mouse lines, demonstrating that cocaine SA in RasGRF2 KO mice was increased relative to WT controls, whereas RasGRF1 KO and WT mice did not differ. This effect in RasGRF2 mice is likely mediated by the Ras-ERK signaling pathway, as pERK1/2 upregulation following cocaine SA was absent in RasGRF2 KO mice. Interestingly, the lentiviral knockdown of RasGRF2 in the NAc had the opposite effect to that in RasGRF2 KO mice, reducing cocaine SA. We subsequently demonstrated that the MEK inhibitor PD325901 administered peripherally prior to cocaine SA increased cocaine intake, replicating the increase seen in RasGRF2 KO mice, whereas PD325901 administered into the NAc decreased cocaine intake, similar to the effect seen following lentiviral knockdown of RasGRF2. These data indicate a role for RasGRF2 in cocaine SA in mice that is ERK-dependent, and suggest a differential effect of global versus site-specific RasGRF2 inhibition.SIGNIFICANCE STATEMENT Exposure to drugs of abuse activates a variety of intracellular pathways, and following repeated exposure, persistent changes in these pathways contribute to drug dependence. Downstream components of the Ras-ERK signaling cascade are involved in the acute and chronic effects of drugs of abuse, but their upstream mediators have not been extensively characterized. Here we show, using a combination of molecular, pharmacological, and lentiviral techniques, that the guanine nucleotide exchange factor RasGRF2 mediates cocaine self-administration via an ERK-dependent mechanism, whereas RasGRF1 has no effect on responding for cocaine. These data indicate dissociative effects of mediators of Ras activity on cocaine reward and expand the understanding of the contribution of Ras-ERK signaling to drug-taking behavior.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/farmacologia , Corpo Estriado/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Recompensa , Fatores ras de Troca de Nucleotídeo Guanina/fisiologia , Acetilação , Animais , Benzamidas/farmacologia , Cocaína/administração & dosagem , Condicionamento Operante , Corpo Estriado/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Histonas/metabolismo , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Especificidade de Órgãos , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Autoadministração , Fatores ras de Troca de Nucleotídeo Guanina/deficiência , Fatores ras de Troca de Nucleotídeo Guanina/genética , ras-GRF1/deficiência , ras-GRF1/genética , ras-GRF1/fisiologia
11.
Open Biol ; 8(11)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404819

RESUMO

Mutations in PINK1 and Parkin result in autosomal recessive Parkinson's disease (PD). Cell culture and in vitro studies have elaborated the PINK1-dependent regulation of Parkin and defined how this dyad orchestrates the elimination of damaged mitochondria via mitophagy. PINK1 phosphorylates ubiquitin at serine 65 (Ser65) and Parkin at an equivalent Ser65 residue located within its N-terminal ubiquitin-like domain, resulting in activation; however, the physiological significance of Parkin Ser65 phosphorylation in vivo in mammals remains unknown. To address this, we generated a Parkin Ser65Ala (S65A) knock-in mouse model. We observe endogenous Parkin Ser65 phosphorylation and activation in mature primary neurons following mitochondrial depolarization and reveal this is disrupted in ParkinS65A/S65A neurons. Phenotypically, ParkinS65A/S65A mice exhibit selective motor dysfunction in the absence of any overt neurodegeneration or alterations in nigrostriatal mitophagy. The clinical relevance of our findings is substantiated by the discovery of homozygous PARKIN (PARK2) p.S65N mutations in two unrelated patients with PD. Moreover, biochemical and structural analysis demonstrates that the ParkinS65N/S65N mutant is pathogenic and cannot be activated by PINK1. Our findings highlight the central role of Parkin Ser65 phosphorylation in health and disease.


Assuntos
Mitocôndrias/metabolismo , Mitofagia , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fosforilação/genética , Proteínas Quinases/genética , Serina/genética , Serina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 400-403, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440418

RESUMO

Pupil size is governed by the synergic action of the Autonomic Nervous System. Pupil Diameter (PD) is primarily influenced by the light level and it is responsive to variations of global luminance level. However, recent studies have shown that there is also a high-level interpretation which could modulate this physiological response. In this paper, we develop an ad-hoc protocol based on iso-luminant stimuli and validate its effectiveness for the analysis of high-level modulation of pupil response. A visual illusion was reproduced from literature and adapted in two different colors. Prior to the response analysis, a reconstruction of the missing data due to blinks and other artifacts were reconstructed by using a recently developed signal reconstruction algorithm (Iterative - Single Spectrum Analysis: I-SSA); then both time and frequency domain parameters were extracted from the PD signal. Results indicate that there are peculiarly different responses to iso-luminant stimuli with different image structures and dominating colors, thus indicating a possible high-level processing mechanism. Our results pave the way for future evaluation of comatose or generic unconscious state based on non-contact pupil dynamics assessment.


Assuntos
Algoritmos , Pupila/fisiologia , Artefatos , Sistema Nervoso Autônomo , Piscadela , Feminino , Humanos , Masculino , Percepção Visual
13.
Sci Rep ; 8(1): 15381, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337665

RESUMO

Increasing evidence supports a close relationship between Ras-ERK1/2 activation in the striatum and L-DOPA-induced dyskinesia (LID). ERK1/2 activation by L-DOPA takes place through the crosstalk between D1R/AC/PKA/DARPP-32 pathway and NMDA/Ras pathway. Compelling genetic and pharmacological evidence indicates that Ras-ERK1/2 inhibition prevents LID onset and may even revert already established dyskinetic symptoms. However, it is currently unclear whether exacerbation of Ras-ERK1/2 activity in the striatum may further aggravate dyskinesia in experimental animal models. Here we took advantage of two genetic models in which Ras-ERK1/2 signaling is hyperactivated, the Nf1+/- mice, in which the Ras inhibitor neurofibromin is reduced, and the Ras-GRF1 overexpressing (Ras-GRF1 OE) transgenic mice in which a specific neuronal activator of Ras is enhanced. Nf1+/- and Ras-GRF1 OE mice were unilaterally lesioned with 6-OHDA and treated with an escalating L-DOPA dosing regimen. In addition, a subset of Nf1+/- hemi-parkinsonian animals was also co-treated with the Ras inhibitor lovastatin. Our results revealed that Nf1+/- and Ras-GRF1 OE mice displayed similar dyskinetic symptoms to their wild-type counterparts. This observation was confirmed by the lack of differences between mutant and wild-type mice in striatal molecular changes associated to LID (i.e., FosB, and pERK1/2 expression). Interestingly, attenuation of Ras activity with lovastatin does not weaken dyskinetic symptoms in Nf1+/- mice. Altogether, these data suggest that ERK1/2-signaling activation in dyskinetic animals is maximal and does not require further genetic enhancement in the upstream Ras pathway. However, our data also demonstrate that such a genetic enhancement may reduce the efficacy of anti-dyskinetic drugs like lovastatin.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Levodopa/toxicidade , Lovastatina/farmacologia , Neurofibromina 1/fisiologia , Proteínas ras/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Dopaminérgicos/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais , Proteínas ras/genética
14.
J Neurosci ; 38(30): 6640-6652, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29934348

RESUMO

The human 16p11.2 microdeletion is one of the most common gene copy number variations linked to autism, but the pathophysiology associated with this chromosomal abnormality is largely unknown. The 593 kb deletion contains the ERK1 gene and other genes that converge onto the ERK/MAP kinase pathway. Perturbations in ERK signaling are linked to a group of related neurodevelopmental disorders hallmarked by intellectual disability, including autism. We report that mice harboring the 16p11.2 deletion exhibit a paradoxical elevation of ERK activity, cortical cytoarchitecture abnormalities and behavioral deficits. Importantly, we show that treatment with a novel ERK pathway inhibitor during a critical period of brain development rescues the molecular, anatomical and behavioral deficits in the 16p11.2 deletion mice. The ERK inhibitor treatment administered to adult mice ameliorates a subset of these behavioral deficits. Our findings provide evidence for potential targeted therapeutic intervention in 16p11.2 deletion carriers.SIGNIFICANCE STATEMENT The ERK/MAPK pathway is genetically linked to autism spectrum disorders and other syndromes typified by intellectual disability. We provide direct evidence connecting the ERK/MAP kinases to the developmental abnormalities in neurogenesis and cortical cytoarchitecture associated with the 16p11.2 chromosomal deletion. Most importantly, we demonstrate that treatment with a novel ERK-specific inhibitor during development rescues aberrant cortical cytoarchitecture and restores normal levels of cell-cycle regulators during cortical neurogenesis. These treatments partially reverse the behavioral deficits observed in the 16p11.2del mouse model, including hyperactivity, memory as well as olfaction, and maternal behavior. We also report a rescue of a subset of these deficits upon treatment of adult 16p11.2del mice. These data provide a strong rationale for therapeutic approaches to this disorder.


Assuntos
Feto/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Transtorno Autístico/enzimologia , Deleção Cromossômica , Transtornos Cromossômicos/enzimologia , Cromossomos Humanos Par 16/efeitos dos fármacos , Cromossomos Humanos Par 16/enzimologia , Inibidores Enzimáticos/farmacologia , Feminino , Deficiência Intelectual/enzimologia , Camundongos , Peptídeos , Fenótipo , Gravidez
15.
Br J Pharmacol ; 175(5): 782-796, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29232769

RESUMO

BACKGROUND AND PURPOSE: We previously showed that nociceptin/orphanin FQ opioid peptide (NOP) receptor agonists attenuate the expression of levodopa-induced dyskinesia in animal models of Parkinson's disease. We now investigate the efficacy of two novel, potent and chemically distinct NOP receptor agonists, AT-390 and AT-403, to improve Parkinsonian disabilities and attenuate dyskinesia development and expression. EXPERIMENTAL APPROACH: Binding affinity and functional efficacy of AT-390 and AT-403 at the opioid receptors were determined in radioligand displacement assays and in GTPγS binding assays respectively, conducted in CHO cells. Their anti-Parkinsonian activity was evaluated in 6-hydroxydopamine hemi-lesioned rats whereas the anti-dyskinetic properties were assessed in 6-hydroxydopamine hemi-lesioned rats chronically treated with levodopa. The ability of AT-403 to inhibit the D1 receptor-induced phosphorylation of striatal ERK was investigated. KEY RESULTS: AT-390 and AT-403 selectively improved akinesia at low doses and disrupted global motor activity at higher doses. AT-403 palliated dyskinesia expression without causing sedation in a narrow therapeutic window, whereas AT-390 delayed the appearance of abnormal involuntary movements and increased their duration at doses causing sedation. AT-403 did not prevent the priming to levodopa, although it significantly inhibited dyskinesia on the first day of administration. AT-403 reduced the ERK phosphorylation induced by SKF38393 in vitro and by levodopa in vivo. CONCLUSIONS AND IMPLICATIONS: NOP receptor stimulation can provide significant albeit mild anti-dyskinetic effect at doses not causing sedation. The therapeutic window, however, varies across compounds. AT-403 could be a potent and selective tool to investigate the role of NOP receptors in vivo.


Assuntos
Acetamidas/farmacologia , Antiparkinsonianos/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Piperidinas/farmacologia , Receptores Opioides/agonistas , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/antagonistas & inibidores , Acetamidas/uso terapêutico , Animais , Antiparkinsonianos/uso terapêutico , Corpo Estriado/metabolismo , Cricetinae , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Levodopa/antagonistas & inibidores , Masculino , Oxidopamina , Fosforilação/efeitos dos fármacos , Piperidinas/uso terapêutico , Ensaio Radioligante , Ratos , Receptor de Nociceptina
16.
Biol Psychiatry ; 81(3): 179-192, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587266

RESUMO

BACKGROUND: Dysregulation of Ras-extracellular signal-related kinase (ERK) signaling gives rise to RASopathies, a class of neurodevelopmental syndromes associated with intellectual disability. Recently, much attention has been directed at models bearing mild forms of RASopathies whose behavioral impairments can be attenuated by inhibiting the Ras-ERK cascade in the adult. Little is known about the brain mechanisms in severe forms of these disorders. METHODS: We performed an extensive characterization of a new brain-specific model of severe forms of RASopathies, the KRAS12V mutant mouse. RESULTS: The KRAS12V mutation results in a severe form of intellectual disability, which parallels mental deficits found in patients bearing mutations in this gene. KRAS12V mice show a severe impairment of both short- and long-term memory in a number of behavioral tasks. At the cellular level, an upregulation of ERK signaling during early phases of postnatal development, but not in the adult state, results in a selective enhancement of synaptogenesis in gamma-aminobutyric acidergic interneurons. The enhancement of ERK activity in interneurons at this critical postnatal time leads to a permanent increase in the inhibitory tone throughout the brain, manifesting in reduced synaptic transmission and long-term plasticity in the hippocampus. In the adult, the behavioral and electrophysiological phenotypes in KRAS12V mice can be temporarily reverted by inhibiting gamma-aminobutyric acid signaling but not by a Ras-ERK blockade. Importantly, the synaptogenesis phenotype can be rescued by a treatment at the developmental stage with Ras-ERK inhibitors. CONCLUSIONS: These data demonstrate a novel mechanism underlying inhibitory synaptogenesis and provide new insights in understanding mental dysfunctions associated to RASopathies.


Assuntos
Encéfalo/fisiologia , Neurônios GABAérgicos/fisiologia , Deficiência Intelectual/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sinapses/fisiologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores , Potenciação de Longa Duração , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de GABA/metabolismo , Comportamento Social , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
17.
Neurobiol Dis ; 99: 12-23, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27939857

RESUMO

We recently discovered that forebrain activation of the IL-1 receptor/Toll-like receptor (IL-1R1/TLR4) innate immunity signal plays a pivotal role in neuronal hyperexcitability underlying seizures in rodents. Since this pathway is activated in neurons and glia in human epileptogenic foci, it represents a potential target for developing drugs interfering with the mechanisms of epileptogenesis that lead to spontaneous seizures. The lack of such drugs represents a major unmet clinical need. We tested therefore novel therapies inhibiting the IL-1R1/TLR4 signaling in an established murine model of acquired epilepsy. We used an epigenetic approach by injecting a synthetic mimic of micro(mi)RNA-146a that impairs IL1R1/TLR4 signal transduction, or we blocked receptor activation with antiinflammatory drugs. Both interventions when transiently applied to mice after epilepsy onset, prevented disease progression and dramatically reduced chronic seizure recurrence, while the anticonvulsant drug carbamazepine was ineffective. We conclude that IL-1R1/TLR4 is a novel potential therapeutic target for attaining disease-modifications in patients with diagnosed epilepsy.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anticonvulsivantes/administração & dosagem , Epilepsia/terapia , MicroRNAs/administração & dosagem , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Carbamazepina/farmacologia , Cianobactérias , Dipeptídeos/administração & dosagem , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Ácido Caínico , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Oligonucleotídeos/administração & dosagem , Distribuição Aleatória , Receptores Tipo I de Interleucina-1/metabolismo , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , para-Aminobenzoatos/administração & dosagem
18.
Front Mol Neurosci ; 9: 66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559307

RESUMO

A central pathway in synaptic plasticity couples N-Methyl-D-Aspartate-receptor (NMDAR)-signaling to the activation of extracellular signal-regulated kinases (ERKs) cascade. ERK-dependency has been demonstrated for several forms of synaptic plasticity as well as learning and memory and includes local synaptic processes but also long-distance signaling to the nucleus. It is, however, controversial how NMDAR signals are connected to ERK activation in dendritic spines and nuclear import of ERK. The synapto-nuclear messenger Jacob couples NMDAR-dependent Ca(2+)-signaling to CREB-mediated gene expression. Protein transport of Jacob from synapse to nucleus essentially requires activation of GluN2B-containing NMDARs. Subsequent phosphorylation and binding of ERK1/2 to and ERK-dependent phosphorylation of serine 180 in Jacob encodes synaptic but not extrasynaptic NMDAR activation. In this study we show that stimulation of synaptic NMDAR in hippocampal primary neurons and induction of long-term potentiation (LTP) in acute slices results in GluN2B-dependent activation of CaMKII-α and subsequent nuclear import of active ERK and serine 180 phosphorylated Jacob. On the contrary, no evidence was found that either GluN2A-containing NMDAR or RasGRF2 are upstream of ERK activation and nuclear import of Jacob and ERK.

19.
Elife ; 52016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27557444

RESUMO

Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Animais , Benzamidas/metabolismo , Peptídeos Penetradores de Células/metabolismo , Corpo Estriado/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/metabolismo , Camundongos
20.
Psychopharmacology (Berl) ; 233(15-16): 2943-54, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27245230

RESUMO

RATIONALE: Despite the critical role attributed to phosphorylated extracellular signal regulated kinase (pERK1/2) in the nucleus accumbens (Acb) in the actions of addictive drugs, the effects of morphine on ERK1/2 phosphorylation in this area are still controversial. OBJECTIVES: In order to investigate further this issue, we studied (1) the ability of morphine to affect ERK1/2 phosphorylation in the shell (AcbSh) and core (AcbC) of Sprague-Dawley and Wistar rats and of CD-1 and C57BL/6J mice and (2) the role of dopamine D1 and µ-opioid receptors in Sprague-Dawley rats and CD-1 mice. METHODS: The pERK1/2 expression was assessed by immunohistochemistry. RESULTS: In rats, morphine decreased AcbSh and AcbC pERK1/2 expression, whereas in mice, increased it preferentially in the AcbSh compared with the AcbC. Systemic SCH 39166 decreased pERK1/2 expression on its own in the AcbSh and AcbC of Sprague-Dawley rats and CD-1 mice; furthermore, in rats, SCH 39166 disclosed the ability of morphine to stimulate pERK1/2 expression. Systemic (rats and mice) and intra-Acb (rats) naltrexone prevented both decreases, in rats, and increases, in mice. CONCLUSIONS: These findings confirm the differential effects of morphine in rats and mice Acb and that D1 receptors exert a facilitatory role on ERK1/2 phosphorylation; furthermore, they indicate that, in rats, removal of the D1-dependent pERK1/2 expression discloses the stimulatory influence of morphine on ERK1/2 phosphorylation and that the morphine's ability to decrease pERK1/2 expression is mediated by Acb µ-opioid receptors. Future experiments may disentangle the psychopharmacological significance of the effects of morphine on pERK1/2 in the Acb.


Assuntos
Analgésicos Opioides/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Morfina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores de Dopamina D1/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Dopamina D1/metabolismo , Receptores Opioides mu/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA