Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 116991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906021

RESUMO

Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions. In particular KRAS mutations have been identified as main drivers of macropinocytosis in pancreatic, breast, and non-small cell lung cancers. We performed a high-content screening to identify inhibitors of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC)-derived cells, aiming to prevent nutrient scavenging of PDAC tumors. The screening campaign was conducted in a well-known pancreatic KRAS-mutated cell line (MIAPaCa-2) cultured under nutrient deprivation and using FITC-dextran to precisely quantify macropinocytosis. We assembled a collection of 3584 small molecules, including drugs approved by the Food and Drug Administration (FDA), drug-like molecules against molecular targets, kinase-targeted compounds, and molecules designed to hamper protein-protein interactions. We identified 28 molecules that inhibited macropinocytosis, with potency ranging from 0.4 to 29.9 µM (EC50). A few of them interfered with other endocytic pathways, while 11 compounds did not and were therefore considered specific "bona fide" macropinocytosis inhibitors and further characterized. Four compounds (Ivermectin, Tyrphostin A9, LY2090314, and Pyrvinium Pamoate) selectively hampered nutrient scavenging in KRAS-mutated cancer cells. Their ability to impair albumin-dependent proliferation was replicated both in different 2D cell culture systems and 3D organotypic models. These findings provide a new set of compounds specifically targeting macropinocytosis, which could have therapeutic applications in cancer and infectious diseases.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pinocitose , Pinocitose/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação
2.
Nat Commun ; 14(1): 7086, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925537

RESUMO

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells. Inhibition of C-rich (teloC) dilncRNAs with antisense oligonucleotides leads to DNA replication stress responses, increased genomic instability, and apoptosis induction selectively in ALT cells. Cell death is dependent on DNA replication and is increased by DNA replication stress. Mechanistically, teloC dilncRNA inhibition reduces RAD51 and 53BP1 recruitment to telomeres, boosts the engagement of BIR machinery, and increases C-circles and telomeric sister chromatid exchanges, without increasing telomeric non-S phase synthesis. These results indicate that teloC dilncRNA is necessary for a coordinated recruitment of DDR factors to ALT telomeres and it is essential for ALT cancer cells survival.


Assuntos
Telomerase , Homeostase do Telômero , Homeostase do Telômero/genética , Replicação do DNA , RNA , Sobrevivência Celular/genética , Telômero/genética , Telômero/metabolismo , Telomerase/genética , Telomerase/metabolismo
3.
Sci Transl Med ; 13(623): eabf7036, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878824

RESUMO

Glioblastoma (GBM) is a fatal tumor whose aggressiveness, heterogeneity, poor blood-brain barrier penetration, and resistance to therapy highlight the need for new targets and clinical treatments. A step toward clinical translation includes the eradication of GBM tumor-initiating cells (TICs), responsible for GBM heterogeneity and relapse. By using patient-derived TICs and xenograft orthotopic models, we demonstrated that the selective lysine-specific histone demethylase 1 inhibitor DDP_38003 (LSD1i) is able to penetrate the brain parenchyma in vivo in preclinical models, is well tolerated, and exerts antitumor activity in molecularly different GBMs. LSD1 genetic targeting further strengthens the role of LSD1 in GBM TIC maintenance. GBM TIC plasticity supports their adaptation and survival under a plethora of environmental stresses, including nutrient deficiency and proteostasis perturbation. By mimicking these stresses in vitro, we found that LSD1 inhibition hampers the induction of the activating transcription factor 4 (ATF4), the master regulator of the integrated stress response (ISR). The resulting aberrant ISR sensitizes GBM TICs to stress-induced cell death, hampering tumor aggressiveness. Functionally, LSD1i interferes with LSD1 scaffolding function and prevents its interaction with CREBBP, a critical ATF4 activator. By disrupting the interaction between CREBBP and LSD1-ATF4 axis, LSD1 inhibition prevents GBM TICs from overcoming stress and sustaining GBM progression. The effectiveness of the LSD1 inhibition in preclinical models shown here places a strong rationale toward its clinical translation for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Desmetilases/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/patologia
4.
ACS Med Chem Lett ; 11(5): 754-759, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435381

RESUMO

Lysine-specific demethylase 1 (LSD1 or KDM1A) is a FAD-dependent enzyme that acts as a transcription corepressor or coactivator by regulating the methylation status of histone H3 lysines K4 and K9, respectively. KDM1A represents an attractive target for cancer therapy. While, in the past, the main medicinal chemistry strategy toward KDM1A inhibition was based on the optimization of ligands that irreversibly bind the FAD cofactor within the enzyme catalytic site, we and others have also identified reversible inhibitors. Herein we reported the discovery of 5-imidazolylthieno[3,2-b]pyrroles, a new series of KDM1A inhibitors endowed with picomolar inhibitory potency, active in cells and efficacious after oral administration in murine leukemia models.

5.
Sci Rep ; 9(1): 6460, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015566

RESUMO

A novel class of small non-coding RNAs called DNA damage response RNAs (DDRNAs) generated at DNA double-strand breaks (DSBs) in a DROSHA- and DICER-dependent manner has been shown to regulate the DNA damage response (DDR). Similar molecules were also reported to guide DNA repair. Here, we show that DDR activation and DNA repair can be pharmacologically boosted by acting on such non-coding RNAs. Cells treated with enoxacin, a compound previously demonstrated to augment DICER activity, show stronger DDR signalling and faster DNA repair upon exposure to ionizing radiations compared to vehicle-only treated cells. Enoxacin stimulates DDRNA production at chromosomal DSBs and at dysfunctional telomeres, which in turn promotes 53BP1 accumulation at damaged sites, therefore in a miRNA-independent manner. Increased 53BP1 occupancy at DNA lesions induced by enoxacin ultimately suppresses homologous recombination, channelling DNA repair towards faster and more accurate non-homologous end-joining, including in post-mitotic primary neurons. Notably, augmented DNA repair stimulated by enoxacin increases the survival also of cancer cells treated with chemotherapeutic agents.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Enoxacino/farmacologia , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células HeLa , Humanos , MicroRNAs/genética , Telômero/genética , Telômero/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
6.
Future Med Chem ; 9(11): 1161-1174, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28722470

RESUMO

BACKGROUND: Histone lysine demethylases (KDMs) are well-recognized targets in oncology drug discovery. They function at the post-translation level controlling chromatin conformation and gene transcription. KDM1A is a flavin adenine dinucleotide-dependent amine oxidase, overexpressed in several tumor types, including acute myeloid leukemia, neuroblastoma and non-small-cell lung cancer. Among the many known monoamine oxidase inhibitors screened for KDM1A inhibition, tranylcypromine emerged as a moderately active hit, which irreversibly binds to the flavin adenine dinucleotide cofactor. MATERIAL & METHODS: The KDM1A inhibitors 5a-w were synthesized and tested in vitro and in vivo. The biochemical potency was determined, modulation of target in cells was demonstrated on KDM1A-dependent genes and the anti-clonogenic activity was performed in murine acute promyelocytic Leukemia (APL) blasts. An in vivo efficacy experiment was conducted using an established murine promyelocytic leukemia model. RESULTS: We report a new series of tranylcypromine derivatives substituted on the cyclopropyl moiety, endowed with high potency in both biochemical and cellular assays. CONCLUSION: The most interesting derivative (5a) significantly improved survival rate after oral administration in a murine model of promyelocitic leukemia.


Assuntos
Antineoplásicos/síntese química , Histona Desmetilases/antagonistas & inibidores , Leucemia Promielocítica Aguda/tratamento farmacológico , Tranilcipromina/análogos & derivados , Tranilcipromina/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Leucemia Promielocítica Aguda/patologia , Camundongos , Relação Estrutura-Atividade , Tranilcipromina/farmacocinética , Tranilcipromina/farmacologia
7.
J Biol Chem ; 287(50): 41808-19, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23048041

RESUMO

Genome-wide association studies have led to the identification of numerous susceptibility genes for type 2 diabetes. Among them is Cdkal1, which is associated with reduced ß-cell function and insulin release. Recently, CDKAL1 has been shown to be a methylthiotransferase that modifies tRNA(Lys) to enhance translational fidelity of transcripts, including the one encoding proinsulin. Here, we report that out of several CDKAL1 isoforms deposited in public databases, only isoform 1, which migrates as a 61-kDa protein by SDS-PAGE, is expressed in human islets and pancreatic insulinoma INS-1 and MIN6 cells. We show that CDKAL1 is a novel member of the tail-anchored protein family and exploits the TCR40/Get3-assisted pathway for insertion of its C-terminal transmembrane domain into the endoplasmic reticulum. Using endo-ß-N-acetylglucosaminidase H and peptide:N-glycosidase F sensitivity assays on CDKAL1 constructs carrying an N-glycosylation site within the luminal domain, we further established that CDKAL1 is an endoplasmic reticulum-resident protein. Moreover, we observed that silencing CDKAL1 in INS-1 cells reduces the expression of secretory granule proteins prochromogranin A and proICA512/ICA512-TMF, in addition to proinsulin and insulin. This correlated with reduced glucose-stimulated insulin secretion. Taken together, our findings provide new insight into the role of CDKAL1 in insulin-producing cells and help to understand its involvement in the pathogenesis of diabetes.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Retículo Endoplasmático/metabolismo , Insulinoma/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina/genética , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Inativação Gênica , Humanos , Insulinoma/genética , Insulinoma/patologia , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proinsulina/genética , Proinsulina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/metabolismo , tRNA Metiltransferases
8.
FASEB J ; 24(5): 1419-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20008544

RESUMO

VAPB (vesicle-associated membrane protein-associated protein B) is an endoplasmic reticulum (ER)-resident tail-anchored adaptor protein involved in lipid transport. A dominantly inherited mutant, P56S-VAPB, causes a familial form of amyotrophic lateral sclerosis (ALS) and forms poorly characterized inclusion bodies in cultured cells. To provide a cell biological basis for the understanding of mutant VAPB pathogenicity, we investigated its biogenesis and the inclusions that it generates. Translocation assays in cell-free systems and in cultured mammalian cells were used to investigate P56S-VAPB membrane insertion, and the inclusions were characterized by confocal imaging and electron microscopy. We found that mutant VAPB inserts post-translationally into ER membranes in a manner indistinguishable from the wild-type protein but that it rapidly clusters to form inclusions that remain continuous with the rest of the ER. Inclusions were induced by the mutant also when it was expressed at levels comparable to the endogenous wild-type protein. Ultrastructural analysis revealed that the inclusions represent a novel form of organized smooth ER (OSER) consisting in a limited number of parallel cisternae (usually 2 or 3) interleaved by a approximately 30 nm-thick electron-dense cytosolic layer. Our results demonstrate that the ALS-linked VAPB mutant causes dramatic ER restructuring that may underlie its pathogenicity in motoneurons.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Neurônios Motores/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Retículo Endoplasmático/patologia , Células HeLa , Humanos , Neurônios Motores/patologia , Mutação , Ratos , Proteínas de Transporte Vesicular/genética
9.
Curr Opin Cell Biol ; 19(4): 368-75, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17629691

RESUMO

A large group of diverse, functionally important, and differently localized transmembrane proteins shares a particular membrane topology, consisting of a cytosolic N-terminal region, followed by a transmembrane domain close to the C-terminus. Because of their structure, these C-tail-anchored (TA) proteins must insert into all their target membranes by post-translational pathways. Recent work, based on the development of stringent and sensitive biochemical assays, has demonstrated that novel unexplored mechanisms underlie these post-translational targeting and membrane insertion pathways. Unravelling these pathways will shed light on the biosynthesis and regulation of an important group of membrane proteins and is likely to lead to new concepts in the field of membrane biogenesis.


Assuntos
Proteínas de Membrana/biossíntese , Modelos Biológicos , Animais , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Transporte Proteico , Transdução de Sinais
10.
J Cell Biol ; 175(5): 767-77, 2006 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-17130291

RESUMO

Although transmembrane proteins generally require membrane-embedded machinery for integration, a few can insert spontaneously into liposomes. Previously, we established that the tail-anchored (TA) protein cytochrome b(5) (b5) can posttranslationally translocate 28 residues downstream to its transmembrane domain (TMD) across protein-free bilayers (Brambillasca, S., M. Yabal, P. Soffientini, S. Stefanovic, M. Makarow, R.S. Hegde, and N. Borgese. 2005. EMBO J. 24:2533-2542). In the present study, we investigated the limits of this unassisted translocation and report that surprisingly long (85 residues) domains of different sequence and charge placed downstream of b5's TMD can posttranslationally translocate into mammalian microsomes and liposomes at nanomolar nucleotide concentrations. Furthermore, integration of these constructs occurred in vivo in translocon-defective yeast strains. Unassisted translocation was not unique to b5 but was also observed for another TA protein (protein tyrosine phosphatase 1B) whose TMD, like the one of b5, is only moderately hydrophobic. In contrast, more hydrophobic TMDs, like synaptobrevin's, were incapable of supporting unassisted integration, possibly because of their tendency to aggregate in aqueous solution. Our data resolve long-standing discrepancies on TA protein insertion and are relevant to membrane evolution, biogenesis, and physiology.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Peptídeos/metabolismo , Fosfolipídeos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Lipossomos/metabolismo , Modelos Genéticos , Peptídeos/química , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Am J Physiol Regul Integr Comp Physiol ; 291(4): R861-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16966388

RESUMO

We have recently shown that oxytocin inhibits cell growth when the vast majority of oxytocin receptors (OTRs) are excluded from detergent-resistant membranes (DRMs; the biochemical counterpart of lipid rafts), but has a strong mitogenic effect when the receptors are targeted to these plasma membrane domains upon fusion with caveolin-2, a resident raft protein. The aim of this study was to investigate whether the manipulation of total cell cholesterol can influence OTR localization and signaling. Our data indicate that cholesterol depletion in HEK-293 cells does not affect the signaling events mediated by the OTRs located outside DRMs. When treated with 2 mM methyl-beta-cyclodextrin (MbetaCD), the receptors remained outside and continued to inhibit cell growth. On the contrary, the MbetaCD treatment of cells expressing receptors fused to caveolin-2 led to their redistribution outside DRMs, and converted the receptor-mediated proliferative effect into cell growth inhibition. These data indicate that 1) once released from DRMs, the receptors fused to caveolin-2 signal exactly as wild-type OTRs and 2) their DRM location is responsible for the specific OTR signaling leading to cell proliferation. Finally, we evaluated whether cholesterol loading could force the OTRs into lipid rafts and change their signaling, but, after cell treatment with an MbetaCD/cholesterol complex, receptor stimulation continued to lead to cell growth inhibition, thus indicating that increasing cell cholesterol levels is not sufficient per se to affect OTR signaling.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Receptores de Ocitocina/metabolismo , Transdução de Sinais/fisiologia , Caveolina 2/metabolismo , Divisão Celular/fisiologia , Linhagem Celular , Colesterol/farmacologia , Proteínas de Fluorescência Verde/genética , Humanos , Receptores de Ocitocina/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , beta-Ciclodextrinas/farmacologia
12.
EMBO J ; 24(14): 2533-42, 2005 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15973434

RESUMO

A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.


Assuntos
Citocromos b5/metabolismo , Membranas Intracelulares/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Cães , Humanos , Membranas Intracelulares/enzimologia , Proteínas de Membrana/metabolismo , Chaperonas Moleculares , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Proteolipídeos/metabolismo , Proteínas de Ligação a RNA , Suínos
13.
J Biol Chem ; 278(5): 3489-96, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12446686

RESUMO

C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b(5), carrying an N-glycosylation site in its C-terminal domain (b(5)-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b(5)-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b(5)-Nglyc translocation. The kinetics of translocation were faster for b(5)-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b(5)-Nglyc. Similarly, only low ATP concentrations (below 1 microm), in addition to cytosolic protein(s), were required for in vitro translocation of b(5)-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b(5)-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation.


Assuntos
Citocromos b5/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Citocromos b5/genética , Citosol/metabolismo , Deleção de Genes , Genótipo , Glicosilação , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Recombinantes , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA