Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39252615

RESUMO

CONTEXT: Alterations in RNA splicing may influence protein isoform diversity that contributes to or reflects the pathophysiology of certain diseases. Whereas specific RNA splicing events in pancreatic islets have been investigated in models of inflammation in vitro, how RNA splicing in the circulation correlates with or is reflective of T1D disease pathophysiology in humans remains unexplored. OBJECTIVE: To use machine learning to investigate if alternative RNA splicing events differ between individuals with and without new-onset type 1 diabetes (T1D) and to determine if these splicing events provide insight into T1D pathophysiology. METHODS: RNA deep sequencing was performed on whole blood samples from two independent cohorts: a training cohort consisting of 12 individuals with new-onset T1D and 12 age- and sex-matched nondiabetic controls and a validation cohort of the same size and demographics. Machine learning analysis was used to identify specific isoforms that could distinguish individuals with T1D from controls. RESULTS: Distinct patterns of RNA splicing differentiated participants with T1D from unaffected controls. Notably, certain splicing events, particularly involving retained introns, showed significant association with T1D. Machine learning analysis using these splicing events as features from the training cohort demonstrated high accuracy in distinguishing between T1D subjects and controls in the validation cohort. Gene Ontology pathway enrichment analysis of the retained intron category showed evidence for a systemic viral response in T1D subjects. CONCLUSIONS: Alternative RNA splicing events in whole blood are significantly enriched in individuals with new-onset T1D and can effectively distinguish these individuals from unaffected controls. Our findings also suggest that RNA splicing profiles offer the potential to provide insights into disease pathogenesis.

2.
bioRxiv ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39211280

RESUMO

Introduction: Obesity and gestational diabetes (GDM) are associated with adverse pregnancy outcomes and program the offspring for cardiometabolic disease in a sexually dimorphic manner. The placenta transfers lipids to the fetus and uses these substrates to support its own metabolism impacting the amount of substrate available to the growing fetus. Methods: We collected maternal plasma and placental villous tissue following elective cesarean section at term from women who were lean (pre-pregnancy BMI 18.5-24.9), obese (BMI>30) and type A2 GDM (matched to obese BMI) with male or female fetus (n=4 each group). Lipids were extracted and fatty acid composition of different lipid classes were analyzed by LC-MS/MS analysis. Significant changes in GDM vs obese, GDM vs lean, and obese vs lean were determined using t-test with a Tukey correction set at p<0.05. Results: In placental samples 436 lipids were identified, among which 85 showed significant changes. Of note only in male placentas significant decreases in C22:6 - docosahexaenoic acid (DHA) in phosphatidylcholine (PC) and triglyceride lipid species were seen when comparing tissue from GDM women to lean. In maternal plasma we observed no effect of obesity. GDM or fetal sex. Conclusion: This is the first study assessing fatty acid composition of lipids in matched maternal plasma and placental tissue from lean, obese, and GDM women stratified by fetal sex. It highlights how GDM affects distribution of fatty acids in lipid classes changes in a sexually dimorphic manner in the placenta.

3.
Res Sq ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38978592

RESUMO

The year of 2023 displayed the highest average global temperatures since it has been recorded-the duration and severity of extreme heat are projected to increase. Rising global temperatures represent a major public health threat, especially to occupations exposed to hot environments, such as construction and agricultural workers, and first responders. Despite efforts of the scientific community, there is still a need to characterize the pathophysiological processes leading to heat related illness and develop biomarkers that can predict its onset. Here, we performed a plasma lipidomic analysis on male and female subjects who underwent heat tolerance testing (HTT), consisting of a 2-h treadmill walk at 5 km/h with 2% inclination at a controlled temperature of 40°C. We identified 995 lipids from 27 classes, with nearly half of all detected lipids being responsive to HTT. Lipid classes related to substrate utilization were predominantly affected by HTT, with a downregulation of triacylglycerols and upregulation of free fatty acids and acyl-carnitines (CARs). We additionally examined correlations between changes in plasma lipids by using the physiological strain index (PSI). Here, even chain CAR 4:0, 14:0 and 16:1, suggested by-products of incomplete beta oxidation, and diacylglycerols displayed the highest correlation to PSI. PSI did not correlate with plasma lactate levels, suggesting that correlations between even chain CARs and PSI is related to metabolic efficiency versus physical exertion. Overall, our results show that HTT has a strong impact on the plasma lipidome and that metabolic inefficiencies may underlie heat intolerance.

4.
Cancer Cell ; 42(7): 1217-1238.e19, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981438

RESUMO

Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Transdução de Sinais , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Mutação , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Fosforilação , Gradação de Tumores , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
5.
Environ Health Insights ; 18: 11786302241262604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055113

RESUMO

Report-back of research results (RBRR) is becoming standard practice for environmental health research studies. RBRR is thought to increase environmental health literacy (EHL), although standardized measurements are limited. For this study, we developed a report back document on exposure to air pollutants, Polycyclic Aromatic Hydrocarbons, during pregnancy through community engaged research and evaluated whether the report increased EHL. We used focus groups and surveys to gather feedback on the report document from an initial group of study participants (Group 1, n = 22) and then sent the revised report to a larger number of participants (Group 2, n = 168). We conducted focus groups among participants in Group 1 and discussed their suggested changes to the report and how those changes could be implemented. Participants in focus groups demonstrated multiple levels of EHL. While participant engagement critically informed report development, a survey comparing feedback from Group 1 (initial report) and Group 2 (revised report) did not show a significant difference in the ease of reading the report or knowledge gained about air pollutants. We acknowledge that our approach was limited by a lack of EHL tools that assess knowledge and behavior change, and a reliance on quantitative methodologies. Future approaches that merge qualitative and quantitative methodologies to evaluate RBRR and methodologies for assessing RBRR materials and subsequent changes in knowledge, attitudes, and behavior, may be necessary.

6.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673911

RESUMO

One of the most significant challenges in human health risk assessment is to evaluate hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate phases in ambient air pollution associated with petrochemicals from Superfund sites and the burning of fossil fuels. However, little is understood about how PAHs in mixtures contribute to toxicity in lung cells. To investigate mixture interactions and component additivity from environmentally relevant PAHs, two synthetic mixtures were created from PAHs identified in passive air samplers at a legacy creosote site impacted by wildfires. The primary human bronchial epithelial cells differentiated at the air-liquid interface were treated with PAH mixtures at environmentally relevant proportions and evaluated for the differential expression of transcriptional biomarkers related to xenobiotic metabolism, oxidative stress response, barrier integrity, and DNA damage response. Component additivity was evaluated across all endpoints using two independent action (IA) models with and without the scaling of components by toxic equivalence factors. Both IA models exhibited trends that were unlike the observed mixture response and generally underestimated the toxicity across dose suggesting the potential for non-additive interactions of components. Overall, this study provides an example of the usefulness of mixture toxicity assessment with the currently available methods while demonstrating the need for more complex yet interpretable mixture response evaluation methods for environmental samples.


Assuntos
Células Epiteliais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Biológicos , Poluentes Atmosféricos/toxicidade , Células Cultivadas , Brônquios/metabolismo , Brônquios/citologia , Brônquios/efeitos dos fármacos , Biomarcadores
7.
PLoS One ; 19(3): e0293856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551935

RESUMO

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By changing the cross-entropy weights and using augmentation, we demonstrate a generally improved adjusted F1-score over using the originally trained TrailMap model within our test datasets.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Microscopia , Axônios , Aprendizado de Máquina , Encéfalo/diagnóstico por imagem
8.
iScience ; 27(2): 108769, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303689

RESUMO

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies-biomarkers of autoimmunity-is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar time frame. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

9.
J Proteome Res ; 23(8): 3318-3321, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421884

RESUMO

Proteoforms, the different forms of a protein with sequence variations including post-translational modifications (PTMs), execute vital functions in biological systems, such as cell signaling and epigenetic regulation. Advances in top-down mass spectrometry (MS) technology have permitted the direct characterization of intact proteoforms and their exact number of modification sites, allowing for the relative quantification of positional isomers (PI). Protein positional isomers refer to a set of proteoforms with identical total mass and set of modifications, but varying PTM site combinations. The relative abundance of PI can be estimated by matching proteoform-specific fragment ions to top-down tandem MS (MS2) data to localize and quantify modifications. However, the current approaches heavily rely on manual annotation. Here, we present IsoForma, an open-source R package for the relative quantification of PI within a single tool. Benchmarking IsoForma's performance against two existing workflows produced comparable results and improvements in speed. Overall, IsoForma provides a streamlined process for quantifying PI, reduces the analysis time, and offers an essential framework for developing customized proteoform analysis workflows. The software is open source and available at https://github.com/EMSL-Computing/isoforma-lib.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Software , Espectrometria de Massas em Tandem , Humanos , Isomerismo , Espectrometria de Massa com Cromatografia Líquida/métodos , Isoformas de Proteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
10.
Nat Chem Biol ; 20(8): 1033-1043, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38302607

RESUMO

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.


Assuntos
Lignina , Consórcios Microbianos , Lignina/metabolismo , Consórcios Microbianos/fisiologia , Animais , Formigas/metabolismo , Formigas/microbiologia , Ecossistema , Proteômica/métodos , Proteoma/metabolismo , Simbiose
11.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38405958

RESUMO

Background: The Human Proteome Project has credibly detected nearly 93% of the roughly 20,000 proteins which are predicted by the human genome. However, the proteome is enigmatic, where alterations in amino acid sequences from polymorphisms and alternative splicing, errors in translation, and post-translational modifications result in a proteome depth estimated at several million unique proteoforms. Recently mass spectrometry has been demonstrated in several landmark efforts mapping the human proteoform landscape in bulk analyses. Herein, we developed an integrated workflow for characterizing proteoforms from human tissue in a spatially resolved manner by coupling laser capture microdissection, nanoliter-scale sample preparation, and mass spectrometry imaging. Results: Using healthy human kidney sections as the case study, we focused our analyses on the major functional tissue units including glomeruli, tubules, and medullary rays. After laser capture microdissection, these isolated functional tissue units were processed with microPOTS (microdroplet processing in one-pot for trace samples) for sensitive top-down proteomics measurement. This provided a quantitative database of 616 proteoforms that was further leveraged as a library for mass spectrometry imaging with near-cellular spatial resolution over the entire section. Notably, several mitochondrial proteoforms were found to be differentially abundant between glomeruli and convoluted tubules, and further spatial contextualization was provided by mass spectrometry imaging confirming unique differences identified by microPOTS, and further expanding the field-of-view for unique distributions such as enhanced abundance of a truncated form (1-74) of ubiquitin within cortical regions. Conclusions: We developed an integrated workflow to directly identify proteoforms and reveal their spatial distributions. Where of the 20 differentially abundant proteoforms identified as discriminate between tubules and glomeruli by microPOTS, the vast majority of tubular proteoforms were of mitochondrial origin (8 of 10) where discriminate proteoforms in glomeruli were primarily hemoglobin subunits (9 of 10). These trends were also identified within ion images demonstrating spatially resolved characterization of proteoforms that has the potential to reshape discovery-based proteomics because the proteoforms are the ultimate effector of cellular functions. Applications of this technology have the potential to unravel etiology and pathophysiology of disease states, informing on biologically active proteoforms, which remodel the proteomic landscape in chronic and acute disorders.

12.
Geohealth ; 8(2): e2023GH000937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344245

RESUMO

To understand how chemical exposure can impact health, researchers need tools that capture the complexities of personal chemical exposure. In practice, fine particulate matter (PM2.5) air quality index (AQI) data from outdoor stationary monitors and Hazard Mapping System (HMS) smoke density data from satellites are often used as proxies for personal chemical exposure, but do not capture total chemical exposure. Silicone wristbands can quantify more individualized exposure data than stationary air monitors or smoke satellites. However, it is not understood how these proxy measurements compare to chemical data measured from wristbands. In this study, participants wore daily wristbands, carried a phone that recorded locations, and answered daily questionnaires for a 7-day period in multiple seasons. We gathered publicly available daily PM2.5 AQI data and HMS data. We analyzed wristbands for 94 organic chemicals, including 53 polycyclic aromatic hydrocarbons. Wristband chemical detections and concentrations, behavioral variables (e.g., time spent indoors), and environmental conditions (e.g., PM2.5 AQI) significantly differed between seasons. Machine learning models were fit to predict personal chemical exposure using PM2.5 AQI only, HMS only, and a multivariate feature set including PM2.5 AQI, HMS, and other environmental and behavioral information. On average, the multivariate models increased predictive accuracy by approximately 70% compared to either the AQI model or the HMS model for all chemicals modeled. This study provides evidence that PM2.5 AQI data alone or HMS data alone is insufficient to explain personal chemical exposures. Our results identify additional key predictors of personal chemical exposure.

13.
J Expo Sci Environ Epidemiol ; 34(4): 679-687, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38177333

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive environmental pollutants with a variety of known health effects. While significant work has been completed to estimate personal exposure to PAHs, less has been done to identify sources of these exposures. Comprehensive characterization of reported sources of personal PAH exposure is a critical step to more easily identify individuals at risk of high levels of exposure and for developing targeted interventions based on source of exposure. OBJECTIVE: In this study, we leverage data from a New York (NY)-based birth cohort to identify personal characteristics or behaviors associated with personal PAH exposure and develop models for the prediction of PAH exposure. METHODS: We quantified 61 PAHs measured using silicone wristband samplers in association with 75 questionnaire variables from 177 pregnant individuals. We evaluated univariate associations between each compound and questionnaire variable, conducted regression tree analysis for each PAH compound and completed a principal component analysis of for each participant's entire PAH exposure profile to determine the predictors of PAH levels. RESULTS: Regression tree analyses of individual compounds and exposure mixture identified income, time spent outdoors, maternal age, country of birth, transportation type, and season as the variables most frequently predictive of exposure.


Assuntos
Exposição Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Inquéritos e Questionários , Feminino , Hidrocarbonetos Policíclicos Aromáticos/análise , Exposição Ambiental/análise , Adulto , Gravidez , Poluentes Ambientais/análise , Monitoramento Ambiental/métodos , New York , Adulto Jovem , Estudos de Coortes , Punho , Análise de Componente Principal
14.
Pac Symp Biocomput ; 29: 170-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160278

RESUMO

Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.


Assuntos
Monitoramento Ambiental , Dispositivos Eletrônicos Vestíveis , Humanos , Biologia Computacional , Análise de Dados , Monitoramento Ambiental/métodos , Silicones/química
15.
J Proteome Res ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085827

RESUMO

PMart is a web-based tool for reproducible quality control, exploratory data analysis, statistical analysis, and interactive visualization of 'omics data, based on the functionality of the pmartR R package. The newly improved user interface supports more 'omics data types, additional statistical capabilities, and enhanced options for creating downloadable graphics. PMart supports the analysis of label-free and isobaric-labeled (e.g., TMT, iTRAQ) proteomics, nuclear magnetic resonance (NMR) and mass-spectrometry (MS)-based metabolomics, MS-based lipidomics, and ribonucleic acid sequencing (RNA-seq) transcriptomics data. At the end of a PMart session, a report is available that summarizes the processing steps performed and includes the pmartR R package functions used to execute the data processing. In addition, built-in safeguards in the backend code prevent users from utilizing methods that are inappropriate based on omics data type. PMart is a user-friendly interface for conducting exploratory data analysis and statistical comparisons of omics data without programming.

16.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961439

RESUMO

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By fine-tuning the final two layers of the neural network at a lower learning rate of the TrailMap model, we demonstrate an improved recall and an occasionally improved adjusted F1-score within our test dataset over using the originally trained TrailMap model.

17.
Metabolites ; 13(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37887426

RESUMO

Metabolomics provides a unique snapshot into the world of small molecules and the complex biological processes that govern the human, animal, plant, and environmental ecosystems encapsulated by the One Health modeling framework. However, this "molecular snapshot" is only as informative as the number of metabolites confidently identified within it. The spectral similarity (SS) score is traditionally used to identify compound(s) in mass spectrometry approaches to metabolomics, where spectra are matched to reference libraries of candidate spectra. Unfortunately, there is little consensus on which of the dozens of available SS metrics should be used. This lack of standard SS score creates analytic uncertainty and potentially leads to issues in reproducibility, especially as these data are integrated across other domains. In this work, we use metabolomic spectral similarity as a case study to showcase the challenges in consistency within just one piece of the One Health framework that must be addressed to enable data science approaches for One Health problems. Here, using a large cohort of datasets comprising both standard and complex datasets with expert-verified truth annotations, we evaluated the effectiveness of 66 similarity metrics to delineate between correct matches (true positives) and incorrect matches (true negatives). We additionally characterize the families of these metrics to make informed recommendations for their use. Our results indicate that specific families of metrics (the Inner Product, Correlative, and Intersection families of scores) tend to perform better than others, with no single similarity metric performing optimally for all queried spectra. This work and its findings provide an empirically-based resource for researchers to use in their selection of similarity metrics for GC-MS identification, increasing scientific reproducibility through taking steps towards standardizing identification workflows.

18.
Mil Med Res ; 10(1): 48, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853489

RESUMO

BACKGROUND: Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS: To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS: Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION: This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.


Assuntos
Exercício Físico , Multiômica , Humanos , Exercício Físico/fisiologia , Citocinas
19.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873084

RESUMO

Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.

20.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546869

RESUMO

Sphingomyelin (SM) is a major component of mammalian cell membranes and particularly abundant in the myelin sheath that surrounds nerve fibers. Its production is catalyzed by SM synthases SMS1 and SMS2, which interconvert phosphatidylcholine and ceramide to diacylglycerol and SM in the Golgi and at the plasma membrane, respectively. As the lipids participating in this reaction fulfill both structural and signaling functions, SMS enzymes have considerable potential to influence diverse important cellular processes. The nematode Caenorhabditis elegans is an attractive model for studying both animal development and human disease. The organism contains five SMS homologues but none of these have been characterized in any detail. Here, we carried out the first systematic analysis of SMS family members in C. elegans . Using heterologous expression systems, genetic ablation, metabolic labeling and lipidome analyses, we show that C. elegans harbors at least three distinct SM synthases and one ceramide phosphoethanolamine (CPE) synthase. Moreover, C. elegans SMS family members have partially overlapping but also unique subcellular distributions and together occupy all principal compartments of the secretory pathway. Our findings shed light on crucial aspects of sphingolipid metabolism in a valuable animal model and opens avenues for exploring the role of SM and its metabolic intermediates in organismal development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA