Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1142974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938044

RESUMO

In sweet cherry (Prunus avium L.), flowering date is strongly dependent on the environment conditions and, therefore, is a trait of major interest for adaptation to climate change. Such trait can be influenced by genotype-by-environment interaction (G×E), that refers to differences in the response of genotypes to different environments. If not taken into account, G×E can reduce selection accuracy and overall genetic gain. However, little is known about G×E in fruit tree species. Flowering date is a highly heritable and polygenic trait for which many quantitative trait loci (QTLs) have been identified. As for the overall genetic performance, differential expression of QTLs in response to environment (QTL-by-environment interaction, QTL×E) can occur. The present study is based on the analysis of a multi-environment trial (MET) suitable for the study of G×E and QTL×E in sweet cherry. It consists of a sweet cherry F1 full-sib family (n = 121) derived from the cross between cultivars 'Regina' and 'Lapins' and planted in two copies in five locations across four European countries (France, Italy, Slovenia and Spain) covering a large range of climatic conditions. The aim of this work was to study the effect of the environment on flowering date and estimate G×E, to carry QTL detection in different environments in order to study the QTL stability across environments and to estimate QTL×E. A strong effect of the environment on flowering date and its genetic control was highlighted. Two large-effect and environment-specific QTLs with significant QTL×E were identified on linkage groups (LGs) 1 and 4. This work gives new insights into the effect of the environment on a trait of main importance in one of the most economically important fruit crops in temperate regions. Moreover, molecular markers were developed for flowering date and a strategy consisting in using specific markers for warm or cold regions was proposed to optimize marker-assisted selection (MAS) in sweet cherry breeding programs.

2.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184200

RESUMO

Flowering date is an important trait in Prunus fruit species, especially for their adaptation in a global warming context. Numerous quantitative trait loci (QTLs) have been identified and a major one was previously located on LG4. The objectives of this study were to fine-map this QTL in sweet cherry, to identify robust candidate genes by using the new sweet cherry genome sequence of the cultivar 'Regina' and to define markers usable in marker-assisted selection (MAS). We performed QTL analyses on two populations derived from crosses using cultivars 'Regina' and 'Garnet' as parents. The first one (n = 117) was phenotyped over ten years, while the second one (n = 1386) was evaluated during three years. Kompetitive allele specific PCR (KASP) markers located within the QTL region on LG4 were developed and mapped within this region, consisting in the first fine mapping in sweet cherry. The QTL interval was narrowed from 380 kb to 68 kb and candidate genes were identified by using the genome sequence of 'Regina'. Their expression was analyzed from bud dormancy period to flowering in cultivars 'Regina' and 'Garnet'. Several genes, such as PavBOI-E3, PavSR45a and PavSAUR71, were differentially expressed in these two cultivars and could be then considered as promising candidate genes. Two KASP markers were validated using a population derived from a cross between cultivars 'Regina' and 'Lapins' and two collections, including landraces and modern cultivars. Thanks to the high synteny within the Prunus genus, these results give new insights into the control of flowering date in Prunus species and pave the way for the development of molecular breeding strategies.

3.
Hortic Res ; 8(1): 136, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059661

RESUMO

Rain-induced fruit cracking is a major problem in sweet cherry cultivation. Basic research has been conducted to disentangle the physiological and mechanistic bases of this complex phenomenon, whereas genetic studies have lagged behind. The objective of this work was to disentangle the genetic determinism of rain-induced fruit cracking. We hypothesized that a large genetic variation would be revealed, by visual field observations conducted on mapping populations derived from well-contrasted cultivars for cracking tolerance. Three populations were evaluated over 7-8 years by estimating the proportion of cracked fruits for each genotype at maturity, at three different areas of the sweet cherry fruit: pistillar end, stem end, and fruit side. An original approach was adopted to integrate, within simple linear models, covariates potentially related to cracking, such as rainfall accumulation before harvest, fruit weight, and firmness. We found the first stable quantitative trait loci (QTLs) for cherry fruit cracking, explaining percentages of phenotypic variance above 20%, for each of these three types of cracking tolerance, in different linkage groups, confirming the high complexity of this trait. For these and other QTLs, further analyses suggested the existence of at least two-linked QTLs in each linkage group, some of which showed confidence intervals close to 5 cM. These promising results open the possibility of developing marker-assisted selection strategies to select cracking-tolerant sweet cherry cultivars. Further studies are needed to confirm the stability of the reported QTLs over different genetic backgrounds and environments and to narrow down the QTL confidence intervals, allowing the exploration of underlying candidate genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA