Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 539(7629): 448-451, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27783598

RESUMO

The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Pinças Ópticas , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Redobramento de Proteína , Estabilidade Proteica , Imagem Individual de Molécula , Especificidade por Substrato
2.
Haematologica ; 99(8): 1395-402, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997149

RESUMO

Long-term granulocyte-colony stimulating factor treatment has been shown to be safe and effective in severe chronic neutropenia patients. However, data on its use during pregnancy are limited. To address this issue, we analyzed all pregnancies reported to the European branch of the Severe Chronic Neutropenia International Registry since 1994. A total of 38 pregnancies in 21 women with chronic neutropenia (16 pregnancies in 10 women with congenital, 10 in 6 women with cyclic, 12 in 5 women with idiopathic neutropenia) were reported. Granulocyte-colony stimulating factor was administered throughout pregnancy in 16 women and for at least one trimester in a further 5 women. No major differences were seen between treated and untreated women with respect to pregnancy outcome, newborn complications and infections. In addition, we evaluated the genetic transmission of known or suspected genetic defects in 16 mothers having 22 newborns as well as in 8 men fathering 15 children. As a proof of inheritance, neutropenia was passed on to the newborn in 58% from female and in 62% from male patients with ELANE mutations, but also to some newborns from parents with unknown gene mutation. Based on our results, granulocyte-colony stimulating factor therapy has been shown to be safe for mothers throughout pregnancies and for newborns without any signs of teratogenicity. With an increasing number of adult patients, genetic counseling prior to conception and supportive care of mothers during pregnancy are crucial. The acceptance of having affected children may reflect the high quality of life obtained due to this treatment.


Assuntos
Neutropenia/diagnóstico , Neutropenia/terapia , Complicações Hematológicas na Gravidez/diagnóstico , Complicações Hematológicas na Gravidez/terapia , Sistema de Registros , Adulto , Estudos de Coortes , Gerenciamento Clínico , Europa (Continente)/epidemiologia , Feminino , Humanos , Recém-Nascido , Masculino , Neutropenia/epidemiologia , Gravidez , Complicações Hematológicas na Gravidez/epidemiologia , Resultado da Gravidez/epidemiologia , Resultado do Tratamento , Adulto Jovem
3.
Nature ; 500(7460): 98-101, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23831649

RESUMO

Protein folding is often described as a search process, in which polypeptides explore different conformations to find their native structure. Molecular chaperones are known to improve folding yields by suppressing aggregation between polypeptides before this conformational search starts, as well as by rescuing misfolds after it ends. Although chaperones have long been speculated to also affect the conformational search itself--by reshaping the underlying folding landscape along the folding trajectory--direct experimental evidence has been scarce so far. In Escherichia coli, the general chaperone trigger factor (TF) could play such a role. TF has been shown to interact with nascent chains at the ribosome, with polypeptides released from the ribosome into the cytosol, and with fully folded proteins before their assembly into larger complexes. To investigate the effect of TF from E. coli on the conformational search of polypeptides to their native state, we investigated individual maltose binding protein (MBP) molecules using optical tweezers. Here we show that TF binds folded structures smaller than one domain, which are then stable for seconds and ultimately convert to the native state. Moreover, TF stimulates native folding in constructs of repeated MBP domains. The results indicate that TF promotes correct folding by protecting partially folded states from distant interactions that produce stable misfolded states. As TF interacts with most newly synthesized proteins in E. coli, we expect these findings to be of general importance in understanding protein folding pathways.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína , Sítios de Ligação , Citosol/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/biossíntese , Modelos Moleculares , Pinças Ópticas , Peptídeos/química , Peptídeos/metabolismo , Biossíntese de Proteínas , Conformação Proteica , Redobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Mol Cell ; 48(1): 63-74, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22921937

RESUMO

How nascent polypeptides emerging from ribosomes fold into functional structures is poorly understood. Here, we monitor disulfide bond formation, protease resistance, and enzymatic activity in nascent polypeptides to show that in close proximity to the ribosome, conformational space and kinetics of folding are restricted. Folding constraints decrease incrementally with distance from the ribosome surface. Upon ribosome binding, the chaperone Trigger Factor counters folding also of longer nascent chains, to extents varying between different chain segments. Trigger Factor even binds and unfolds pre-existing folded structures, the unfolding activity being limited by the thermodynamic stability of nascent chains. Folding retardation and unfolding activities are not shared by the DnaK chaperone assisting later folding steps. These ribosome- and Trigger Factor-specific activities together constitute an efficient mechanism to prevent or even revert premature folding, effectively limiting misfolded intermediates during protein synthesis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína , Ribossomos/metabolismo , Proteínas de Bactérias , Dissulfetos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/química , Conformação Proteica , Estrutura Terciária de Proteína , Ribonucleases/química , Ribonucleases/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo
5.
J Biol Chem ; 283(7): 4124-32, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18045873

RESUMO

In all organisms ribosome-associated chaperones assist early steps of protein folding. To elucidate the mechanism of their action, we determined the kinetics of individual steps of the ribosome binding/release cycle of bacterial trigger factor (TF), using fluorescently labeled chaperone and ribosome-nascent chain complexes. Both the association and dissociation rates of TF-ribosome complexes are modulated by nascent chains, whereby their length, sequence, and folding status are influencing parameters. However, the effect of the folding status is modest, indicating that TF can bind small globular domains and accommodate them within its substrate binding cavity. In general, the presence of a nascent chain causes an up to 9-fold increase in the rate of TF association, which provides a kinetic explanation for the observed ability of TF to efficiently compete with other cytosolic chaperones for binding to nascent chains. Furthermore, a subset of longer nascent polypeptides promotes the stabilization of TF-ribosome complexes, which increases the half-life of these complexes from 15 to 50 s. Nascent chains thus regulate their folding environment generated by ribosome-associated chaperones.


Assuntos
Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Ribossomos/metabolismo , Cinética
6.
J Biol Chem ; 281(42): 31963-71, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16926148

RESUMO

In bacteria, ribosome-bound Trigger Factor assists the folding of newly synthesized proteins. The N-terminal domain (N) of Trigger Factor mediates ribosome binding, whereas the middle domain (P) harbors peptidyl-prolyl isomerase activity. The function of the C-terminal domain (C) has remained enigmatic due to structural instability in isolation. Here, we have characterized a stabilized version of the C domain (C(S)), designed on the basis of the recently solved atomic structure of Trigger Factor. Strikingly, only the isolated C(S) domain or domain combinations thereof (NC(S), PC(S)) revealed substantial chaperone activity in vitro and in vivo. Furthermore, to disrupt the C domain without affecting the overall Trigger Factor structure, we generated a mutant (Delta53) by deletion of the C-terminal 53 amino acid residues. This truncation caused the complete loss of the chaperone activity of Trigger Factor in vitro and severely impaired its function in vivo. Therefore, we conclude that the chaperone activity of Trigger Factor critically depends on its C-terminal domain as the central structural chaperone module. Intriguingly, a structurally similar module is found in the periplasmic chaperone SurA and in MPN555, a protein of unknown function. We speculate that this conserved module can exist solely or in combination with additional domains to fulfill diverse chaperone functions in the cell.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Peptidilprolil Isomerase/química , Sítios de Ligação , Citosol/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Mutação , Peptídeos/química , Peptidilprolil Isomerase/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Ribonuclease T1/química , Temperatura
7.
J Biol Chem ; 281(10): 6539-45, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16407311

RESUMO

In prokaryotes, the ribosome-associated Trigger Factor is the first chaperone newly synthesized polypeptides encounter when they emerge from the ribosomal exit tunnel. The effects that Trigger Factor exerts on nascent polypeptides, however, remain unclear. Here we analyzed the potential of the Trigger Factor to shield nascent polypeptides at the ribosome. A set of arrested nascent polypeptides differing in origin, size, and folding status were synthesized in an Escherichia coli-based in vitro transcription/translation system and tested for sensitivity to degradation by the unspecific protease proteinase K. In the absence of Trigger Factor, nascent polypeptides exposed outside the ribosomal exit tunnel were rapidly degraded unless they were folded into a compact domain. The presence of Trigger Factor, as well as a Trigger Factor fragment lacking its peptidyl-prolyl isomerase domain, counteracted degradation of all unfolded nascent polypeptides tested. This protective function was specific for ribosome-tethered Trigger Factor, since neither non-ribosomal Trigger Factor nor the DnaK system, which cooperates with Trigger Factor in the folding process in vivo, revealed a comparable efficiency in protection. Furthermore, shielding by Trigger Factor was not restricted to short stretches of nascent chains but was evident for large, non-native nascent polypeptides exposing up to 41 kDa outside the ribosome. We suggest that Trigger Factor supports productive de novo folding by shielding nascent polypeptides on the ribosome thereby preventing untimely degradation or aggregation processes. This protected environment provided by Trigger Factor might be particularly important for large multidomain proteins to fold productively into their native states.


Assuntos
Proteínas de Escherichia coli/biossíntese , Escherichia coli/enzimologia , Peptidilprolil Isomerase/fisiologia , Proteínas Ribossômicas/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Peptídeo Hidrolases/química , Dobramento de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA