RESUMO
When IL-1 receptor antagonist (IL-1rn) is knocked out, mice have shown strain background dependent and major QTL regulated susceptibility to spontaneously inflammatory arthritis disease (SAD). The impact on bone properties resulting from the interactions of IL-1rn, genomic background strains, and the QTL locus, is unknown. Bone properties in the four specifically bred mouse strains with mutation of IL-1rn and variations in genomic components were investigated with high-resolution MicroCT and genomic analytical tools. Two congenic mouse strains were also measured to evaluate the influence on bone properties by a QTL in the region in chromosome 1. Our results reveal that several bone phenotypes, including bone mineral density (BMD), bone volume, tibial length, and cortical thickness of the tibia are different between wild type and IL-1rn knockout mice in both Balb/c and DBA/1 backgrounds, but IL-1rn knockout affects BMD differently between the two mouse strains. The absence of IL-1rn decreases BMD in Balb/c mice but increases BMD in DBA/1-/- mice compared to their respective wild type counterparts. A QTL transferred from the Balb/c genetic background which affects arthritis in congenic strains appears to also regulate BMD. While several genes, including Ctsg and Prg2, may affect BMD, Ifi202b is the most favored candidate gene for regulating BMD as well as SAD. In conclusion, the previously mentioned bone phenotypes are each influenced in different ways by the loss of IL-1ra when considered in mice from varying genomic backgrounds.
Assuntos
Densidade Óssea , Proteína Antagonista do Receptor de Interleucina 1 , Camundongos Knockout , Locos de Características Quantitativas , Animais , Camundongos , Densidade Óssea/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Camundongos Endogâmicos BALB C , Osso e Ossos/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Camundongos Endogâmicos DBA , Masculino , Fenótipo , Microtomografia por Raio-X , Doenças Hereditárias AutoinflamatóriasRESUMO
The biosynthesis of C-reactive protein (CRP) in the liver is increased in inflammatory diseases including rheumatoid arthritis. Previously published data suggest a protective function of CRP in arthritis; however, the mechanism of action of CRP remains undefined. The aim of this study was to evaluate the effects of human CRP on the development of collagen-induced arthritis (CIA) in mice which is an animal model of autoimmune inflammatory arthritis. Two CRP species were employed: wild-type CRP which binds to aggregated IgG at acidic pH and a CRP mutant which binds to aggregated IgG at physiological pH. Ten CRP injections were given on alternate days during the development of CIA. Both wild-type and mutant CRP reduced the incidence of CIA, that is, reduced the number of mice developing CIA; however, CRP did not affect the severity of the disease in arthritic mice. The serum levels of IL-17, IL-6, TNF-α, IL-10, IL-2 and IL-1ß were measured: both wild-type and mutant CRP decreased the level of IL-17 and IL-6 but not of TNF-α, IL-10, IL-2 and IL-1ß. These data suggest that CRP recognizes and binds to immune complexes, although it was not clear whether CRP functioned in its native pentameric or in its structurally altered pentameric form in the CIA model. Consequently, ligand-complexed CRP, through an as-yet undefined mechanism, directly or indirectly, inhibits the production of IL-17 and eventually protects against the initiation of the development of arthritis. The data also suggest that IL-17, not TNF-α, is critical for the development of autoimmune inflammatory arthritis.
Assuntos
Artrite Experimental , Proteína C-Reativa , Interleucina-17 , Fator de Necrose Tumoral alfa , Animais , Artrite Experimental/imunologia , Artrite Experimental/sangue , Proteína C-Reativa/metabolismo , Interleucina-17/sangue , Camundongos , Fator de Necrose Tumoral alfa/sangue , Humanos , Masculino , Camundongos Endogâmicos DBA , Modelos Animais de Doenças , Artrite Reumatoide/imunologia , Artrite Reumatoide/sangueRESUMO
Objective: Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites characterized by cartilage degeneration. Methods: An scFv specific for type II collagen (CII) was used to produce a synthetic Notch (synNotch) receptor that enables "CII-synNotch" mesenchymal stromal cells (MSCs) to recognize CII fibers exposed in damaged cartilage. Engineered cell activation by both CII-treated culture surfaces and on primary tissue samples was measured via inducible reporter transgene expression. TGFß3-expressing cells were assessed for cartilage anabolic gene expression via qRT-PCR. In a co-culture with CII-synNotch MSCs engineered to express IL-1Ra, ATDC5 chondrocytes were stimulated with IL-1α, and inflammatory responses of ATDC5s were profiled via qRT-PCR and an NF-κB reporter assay. Results: CII-synNotch MSCs are highly responsive to CII, displaying activation ranges over 40-fold in response to physiologic CII inputs. CII-synNotch cells exhibit the capacity to distinguish between healthy and damaged cartilage tissue and constrain transgene expression to regions of exposed CII fibers. Receptor-regulated TGFß3 expression resulted in upregulation of Acan and Col2a1 in MSCs, and inducible IL-1Ra expression by engineered CII-synNotch MSCs reduced pro-inflammatory gene expression in chondrocytes. Conclusion: This work demonstrates proof-of-concept that the synNotch platform guides MSCs for spatially regulated, disease-dependent delivery of OA-relevant biologic drugs.
RESUMO
INTRODUCTION: Rheumatoid arthritis (RA) is a systemic autoimmune disease with limited treatment success, characterized by chronic inflammation and progressive cartilage and bone destruction. Accumulating evidence has shown that neutrophil extracellular traps (NETs) released by activated neutrophils are important for initiating and perpetuating synovial inflammation and thereby could be a promising therapeutic target for RA. K/B × N serum transfer-induced arthritis (STIA) is a rapidly developed joint inflammatory model that somehow mimics the inflammatory response in patients with RA. Human gingival-derived mesenchymal stem cells (GMSCs) have been previously shown to possess immunosuppressive effects in arthritis and humanized animal models. However, it is unknown whether GMSCs can manage neutrophils in autoimmune arthritis. OBJECTIVES: To evaluate whether infusion of GMSCs can alleviate RA by regulating neutrophils and NETs formation. If this is so, we will explore the underlying mechanism(s) in an animal model of inflammatory arthritis. METHODS: The effects of GMSCs on RA were assessed by comparing the symptoms of the K/B × N serum transfer-induced arthritis (STIA) model administered either with GMSCs or with control cells. Phenotypes examined included clinical scores, rear ankle thickness, paw swelling, inflammation, synovial cell proliferation, and immune cell frequency. The regulation of GMSCs on NETs was examined through immunofluorescence and immunoblotting in GMSCs-infused STIA mice and in an in vitro co-culture system of neutrophils with GMSCs. The molecular mechanism(s) by which GMSCs regulate NETs was explored both in vitro and in vivo by silencing experiments. RESULTS: We found in this study that adoptive transfer of GMSCs into STIA mice significantly ameliorated experimental arthritis and reduced neutrophil infiltration and NET formation. In vitro studies also showed that GMSCs inhibited the generation of NETs in neutrophils. Subsequent investigations revealed that GMSCs secreted prostaglandin E2 (PGE2) to activate protein kinase A (PKA), which ultimately inhibited the downstream extracellular signal-regulated kinase (ERK) pathway that is essential for NET formation. CONCLUSION: Our results demonstrate that infusion of GMSCs can ameliorate inflammatory arthritis mainly by suppressing NET formation via the PGE2-PKA-ERK signaling pathway. These findings further support the notion that the manipulation of GMSCs is a promising stem cell-based therapy for patients with RA and other autoimmune and inflammatory diseases.
Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Humanos , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Dinoprostona/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Inflamação/metabolismoRESUMO
The pathophysiology of post-traumatic arthritis (PTOA) is not fully understood. This study used non-invasive repetitive mechanical loading (ML) mouse models to study biochemical, biomechanical, and pain-related behavioral changes induced in mice. Mouse models reflected the effects of the early stages of PTOA in humans. For the PTOA model, cyclic comprehensive loading (9N) was applied to each mouse's left knee joint. ML-induced biochemical and molecular changes were analyzed after loading completion. Cartilage samples were examined using gene expression analysis. Tissue sections were used in subsequent OA severity scoring. Biomechanical features and pain-related behavior were studied after 24 h and three weeks post-ML sessions to examine the development of PTOA. The loaded left knee joint showed a greater ROS/RNS signal than the right knee, which was not loaded. There was a significant increase in cartilage damage and MMP activity in the mechanically loaded joints relative to non-loaded control knee joints. Similarly, we found a difference in the viscoelastic tangent, which highlights significant changes in mechanical properties. Biochemical analyses revealed significant increases in total NO, caspase-3 activity, H2O2, and PGE2 levels. Gene expression analysis highlighted increased catabolism (MMP-13, IL-1ß, TNF-α) with a concomitant decrease in anabolism (ACAN, COL2A1). Histopathology scores clearly indicated increases in OA progression and synovitis. The gait pattern was significantly altered, suggesting signs of joint damage. This study showed that biomechanical, biochemical, and behavioral characteristics of the murine PTOA groups are significantly different from the control group. These results confirm that the current mouse model can be considered for translational PTOA studies.
RESUMO
Citrullination of proteins plays an important role in protein function and it has recently become clear that citrullinated proteins play a role in immune responses. In this study we examined how citrullinated collagen, an extracellular matrix protein, affects T-cell function during the development of autoimmune arthritis. Using an HLA-DR1 transgenic mouse model of rheumatoid arthritis, mice were treated intraperitoneally with either native type I collagen (CI), citrullinated CI (cit-CI), or phosphate buffered saline (PBS) prior to induction of autoimmune arthritis. While the mice given native CI had significantly less severe arthritis than controls administered PBS, mice receiving cit-CI had no decrease in the severity of autoimmune arthritis. Using Jurkat cells expressing the inhibitory receptor leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), Western blot analysis indicated that while CI and cit-CI bound to LAIR-1 with similar affinity, only CI induced phosphorylation of the LAIR ITIM tyrosines; cit-CI was ineffective. These data suggest that cit-CI acts as an antagonist of LAIR-1 signaling, and that the severity of autoimmune arthritis can effectively be altered by targeting T cells with citrullinated collagen.
Assuntos
Artrite Experimental , Artrite Reumatoide , Doenças Autoimunes , Animais , Artrite Reumatoide/metabolismo , Citrulina/metabolismo , Colágeno , Camundongos , Camundongos TransgênicosRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0250177.].
RESUMO
Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1-/- deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.
Assuntos
Artrite Experimental/metabolismo , Calcifediol/análogos & derivados , Calcitriol/farmacologia , Receptores Imunológicos/biossíntese , Linfócitos T/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/genética , Artrite Experimental/patologia , Calcifediol/farmacologia , Camundongos , Camundongos Knockout , Receptores Imunológicos/genética , Linfócitos T/patologiaRESUMO
The collagen-induced arthritis mouse model is a widely studied autoimmune model of rheumatoid arthritis. In this model, autoimmune arthritis is induced by immunization of genetically susceptible strains of mice with type II collagen emulsified in complete Freund's adjuvant. This article describes the steps necessary for the acquisition, handling, and preparation of CII, in addition to the selection of mouse strains, proper immunization technique, and methods for evaluation of the incidence and severity of the autoimmune arthritis. In this model, the first signs of arthritis appear approximately 21 to 28 days after immunization. The protocols in this article should provide the investigator with all the necessary information required to reproducibly induce a high incidence of CIA in genetically susceptible strains of mice, and to critically evaluate the pathology of the disease. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol: Induction of collagen-induced arthritis Support Protocol 1: Purification of type II collagen Support Protocol 2: Purification of type II collagen α1(II) chains Support Protocol 3: Assessment of arthritis incidence and severity Support Protocol 4: Measurement of CII specific antibody by indirect ELISA Support Protocol 5: Coupling CII to magnetic beads Support Protocol 6: Measuring CII-specific antibody by magnetic-bead based ELISA Support Protocol 7: Measurement of T cell responses to CII in CIA.
Assuntos
Artrite Experimental , Animais , Colágeno Tipo II , Modelos Animais de Doenças , Adjuvante de Freund , Imunização , CamundongosRESUMO
The ability to use large doses of vitamin D3 (D3) to chronically treat autoimmune diseases such as rheumatoid arthritis (RA) is prohibitive due to its calcemic effect which can damage vital organs. Cytochrome P450scc (CYP11A1) is able to convert D3 into the noncalcemic analog 20S-hydroxyvitamin D3 [20S(OH)D3]. We demonstrate that 20S(OH)D3 markedly suppresses clinical signs of arthritis and joint damage in a mouse model of RA. Furthermore, treatment with 20S(OH)D3 reduces lymphocyte subsets such as CD4+ T cells and CD19+ B cells leading to a significant reduction in inflammatory cytokines. The ratio of T reg cells (CD4+CD25+Foxp3+ T cells) to CD3+CD4+ T cells is increased while there is a decrease in critical complement-fixing anti-CII antibodies. Since pro-inflammatory cytokines and antibodies against type II collagen ordinarily lead to destruction of cartilage and bone, their decline explains why arthritis is attenuated by 20(OH) D3. These results provide a basis for further consideration of 20S(OH)D3 as a potential treatment for RA and other autoimmune disorders.
Assuntos
Anti-Inflamatórios/farmacologia , Artrite/etiologia , Artrite/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Calcifediol/análogos & derivados , Animais , Artrite/tratamento farmacológico , Artrite/patologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/patologia , Biomarcadores , Calcifediol/farmacologia , Citocinas/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Duração da Terapia , Humanos , Contagem de Linfócitos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Resultado do TratamentoRESUMO
Our previous studies have shown that inoculation of the oral cavity of "humanized" B6.DR1/4 mice with the periodontal pathogen Porphyromonas gingivalis results in an increase in the percentage of circulating Th17 cells, loss of bone and an exacerbation of experimental autoimmune arthritis. The aim of this study was to assess the role played by the human HLA-DRß molecule containing the shared epitope supplied as a transgene to I-AË (murine class II null) C57BL/6 (B6) mice in driving these findings. We compared various immune response parameters as well as alveolar and peri-articular bone loss between humanized B6.DR1 (or B6.DR4) mice and their WT (B6) counterparts. We found that the presence of the shared epitope in the context of inoculation with P. gingivalis enhanced the percentage of Th17 cells generated, dramatically enhanced bone loss and importantly allowed for the generation of CCP2⺠ACPAs that are not found in C57BL/6 or DBA/1 arthritic mouse serum. Due to the exceedingly complex nature of environmental factors impacting on genetic elements, it has been difficult to unravel mechanisms that drive autoimmune arthritis in susceptible individuals. The findings in this study may provide one small piece of this puzzle that can help us to better understand part of this complexity.
Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Epitopos , Perda do Osso Alveolar/imunologia , Animais , Artrite Experimental/sangue , Artrite Reumatoide/sangue , Biomarcadores/sangue , Humanos , Camundongos , Porphyromonas gingivalis/imunologiaRESUMO
Multiple observations implicate T-cell dysregulation as a central event in the pathogenesis of rheumatoid arthritis. Here, we investigated mechanisms for suppressing T-cell activation via the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1). To determine how LAIR-1 affects T-cell receptor (TCR) signaling, we compared 1) T cells from LAIR-1-sufficient and -deficient mice, 2) Jurkat cells expressing either LAIR-1 mutants or C-terminal Src kinase (CSK) mutants, and 3) T cells from mice that contain a CSK transgene susceptible to chemical inhibition. Our results indicated that LAIR-1 engagement by collagen or by complement C1q (C1Q, which contains a collagen-like domain) inhibits TCR signaling by decreasing the phosphorylation of key components in the canonical T-cell signaling pathway, including LCK proto-oncogene SRC family tyrosine kinase (LCK), LYN proto-oncogene SRC family tyrosine kinase (LYN), ζ chain of T-cell receptor-associated protein kinase 70 (ZAP-70), and three mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun N-terminal kinase 1/2, and p38). The intracellular region of LAIR-1 contains two immunoreceptor tyrosine-based inhibition motifs that are both phosphorylated by LAIR-1 activation, and immunoprecipitation experiments revealed that Tyr-251 in LAIR-1 binds CSK. Using CRISPR/Cas9-mediated genome editing, we demonstrate that CSK is essential for the LAIR-1-induced inhibition of the human TCR signal transduction. T cells from mice that expressed a PP1 analog-sensitive form of CSK (CskAS) corroborated these findings, and we also found that Tyr-251 is critical for LAIR-1's inhibitory function. We propose that LAIR-1 activation may be a strategy for controlling inflammation and may offer a potential therapeutic approach for managing autoimmune diseases.
Assuntos
Receptores Imunológicos/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Animais , Proteína Tirosina Quinase CSK/metabolismo , Bovinos , Colágeno Tipo I/metabolismo , Humanos , Células Jurkat , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fosfotirosina/metabolismo , Proto-Oncogene Mas , Proteína-Tirosina Quinase ZAP-70/metabolismoRESUMO
Toll-like receptor (TLR) signaling can contribute to the pathogenesis of arthritis. Disruption of TLR signaling at early stages of arthritis might thereby provide an opportunity to halt the disease progression and ameliorate outcomes. We previously found that Gö6976 inhibits TLR-mediated cytokine production in human and mouse macrophages by inhibiting TLR-dependent activation of protein kinase D1 (PKD1), and that PKD1 is essential for proinflammatory responses mediated by MyD88-dependent TLRs. In this study, we investigated whether PKD1 contributes to TLR-mediated proinflammatory responses in human synovial cells, and whether Gö6976 treatment can suppress the development and progression of type II collagen (CII)-induced arthritis (CIA) in mouse. We found that TLR/IL-1R ligands induced activation of PKD1 in human fibroblast-like synoviocytes (HFLS). TLR/IL-1R-induced expression of cytokines/chemokines was substantially inhibited in Gö6976-treated HFLS and PKD1-knockdown HFLS. In addition, serum levels of anti-CII IgG antibodies, and the incidence and severity of arthritis after CII immunization were significantly reduced in mice treated daily with Gö6976. Synergistic effects of T-cell receptor and TLR, as well as TLR alone, on spleen cell proliferation and cytokine production were significantly inhibited in the presence of Gö6976. Our results suggest a possibility that ameliorating effects of Gö6976 on CIA may be due to its ability to inhibit TLR/IL-1R-activated PKD1, which might play an important role in proinflammatory responses in arthritis, and that PKD1 could be a therapeutic target for inflammatory arthritis.
Assuntos
Artrite Experimental/tratamento farmacológico , Carbazóis/administração & dosagem , Colágeno Tipo II/efeitos adversos , Sinoviócitos/enzimologia , Canais de Cátion TRPP/antagonistas & inibidores , Animais , Artrite Experimental/enzimologia , Artrite Experimental/imunologia , Carbazóis/farmacologia , Células Cultivadas , Humanos , Camundongos , Receptores de Interleucina-1/metabolismo , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia , Receptores Toll-Like/metabolismoRESUMO
Burkitt's lymphoma (BURK), diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are three main types of B-cell lymphomas. This study aimed to compare the differences of affected biological functions and pathways, as well as to explore the possible regulatory mechanisms and the potential therapeutic targets in BURK, DLBCL and MCL. We performed an integrated analysis of 10 lymphoma datasets including 352 BURK patients, 880 DLBCL patients, 216 MCL patients, and 33 controls. Our results showed that signaling pathways, amino acid metabolism and several lipid metabolism pathways varies considerably among these three types of lymphoma. Furthermore, we identified several key transcription factors (TFs) and their target genes that may promote these diseases by influencing multiple carcinogenic pathways. Among these TFs, we reported first that E2F8 displayed the most significant effects in BURK and MCL. Our results demonstrate that over-expression of E2F8 activates target genes that may promote cell cycle, mitosis, immune and other cancer related functions in BURK and MCL. Therefore, we suggest that E2F8 could be used as a biomarker and potential therapeutic target for BURK and MCL. These findings would be helpful in the study of pathogenesis, and drug discovery and also in the prognosis of B cell lymphomas.
RESUMO
The aim of this study was to understand how Syk affects peripheral T cell function. T cells from Syk-/- chimeric mice and DR1 Sykfl/fl CD4cre conditional mice gave strong CD3-induced Th1, Th2, and Th17 cytokine responses. However, an altered peptide ligand (APL) of human CII (256-276) with two substitutions (F263N, E266D), also called A12, elicited only Th2 cytokine responses from Sykfl/fl T cells but not Sykfl/fl-CD4cre T cells. Western blots revealed a marked increase in the phosphorylation of Syk, JNK and p38 upon A12/DR1 activation in WT or Sykfl/fl T cells but not in Sykfl/flCD4-cre cells. We demonstrate that Syk is required for the APL- induction of suppressive cytokines. Chemical Syk inhibitors blocked activation of GATA-3 by peptide A12/DR1. In conclusion, this study provides novel insights into the role that Syk plays in directing T cell activity, and may shape therapeutic approaches for autoimmune diseases.
Assuntos
Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Quinase Syk/imunologia , Linfócitos T/imunologia , Animais , Colágeno Tipo II/genética , Colágeno Tipo II/imunologia , Colágeno Tipo II/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/imunologia , Fator de Transcrição GATA3/metabolismo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Peptídeos/imunologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosforilação , Proteínas Tirosina Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Quinase Syk/antagonistas & inibidores , Quinase Syk/genética , Linfócitos T/enzimologia , Linfócitos T/metabolismo , Células Th2/imunologia , Células Th2/metabolismoRESUMO
The integration of inflammatory signals is paramount in controlling the intensity and duration of immune responses. Eicosanoids, particularly PGE2, are critical molecules in the initiation and resolution of inflammation and in the transition from innate to acquired immune responses. Microsomal PGE synthase 1 (mPGES1) is an integral membrane enzyme whose regulated expression controls PGE2 levels and is highly expressed at sites of inflammation. PGE2 is also associated with modulation of autoimmunity through altering the IL-23/IL-17 axis and regulatory T cell (Treg) development. During a type II collagen-CFA immunization response, lack of mPGES1 impaired the numbers of CD4+ regulatory (Treg) and Th17 cells in the draining lymph nodes. Ag-experienced mPGES1-/- CD4+ cells showed impaired IL-17A, IFN-γ, and IL-6 production when rechallenged ex vivo with their cognate Ag compared with their wild-type counterparts. Additionally, production of PGE2 by cocultured APCs synergized with that of Ag-experienced CD4+ T cells, with mPGES1 competence in the APC compartment enhancing CD4+ IL-17A and IFN-γ responses. However, in contrast with CD4+ cells that were Ag primed in vivo, exogenous PGE2 inhibited proliferation and skewed IL-17A to IFN-γ production under Th17 polarization of naive T cells in vitro. We conclude that mPGES1 is necessary in vivo to mount optimal Treg and Th17 responses during an Ag-driven primary immune response. Furthermore, we uncover a coordination of autocrine and paracrine mPGES1-driven PGE2 production that impacts effector T cell IL-17A and IFN-γ responses.
Assuntos
Comunicação Autócrina , Dinoprostona/metabolismo , Comunicação Parácrina , Prostaglandina-E Sintases/genética , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Epitopos de Linfócito T/imunologia , Regulação da Expressão Gênica , Imunização , Imunomodulação , Ativação Linfocitária/imunologia , Camundongos , Fenótipo , Prostaglandina-E Sintases/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP4/genéticaRESUMO
Several observations implicate a critical role for T cell dysregulation as a central problem in rheumatoid arthritis. We investigated a mechanism for suppressing T cell activation by stimulating a natural inhibitory receptor called leukocyte-associated Ig-like receptor-1 (LAIR-1). The collagen-induced arthritis (CIA) model and DR-1 transgenic mice were used to study the importance of LAIR-1 in autoimmune arthritis. Splenocytes from wild-type or LAIR-1-/- mice were stimulated with soluble anti-CD3 Ab in the presence or absence of α1(II) and supernatants were collected for cytokine analysis. B6.DR1 mice were immunized with type II collagen/CFA to induce arthritis and were treated with either the stimulatory mAb to LAIR-1 or a hamster IgG control. Finally, B6.DR1/LAIR-1-/- and B6.DR1/LAIR-1+/+ mice were challenged for CIA and mean severity scores were recorded thrice weekly. Using splenocytes or purified CD4+ cells that were sufficient in LAIR-1, CD3-induced cytokine secretion was significantly suppressed in the presence of collagen, whereas LAIR-1-deficient splenocytes had no attenuation. Treatment with a stimulatory mAb to LAIR-1 also significantly attenuated CIA in the LAIR+/+ mice. When B6.DR1/LAIR-1-/- mice were immunized with type II collagen they developed more severe arthritis and had a greater percentage of affected limbs than the wild-type mice. These data demonstrate that collagen can suppress the T cell cytokine response through the action of LAIR-1. Treatment with stimulating LAIR-1 Abs suppresses CIA whereas B6.DR1/LAIR-1-/- mice develop more severe arthritis than wild-type controls. These data suggest that LAIR-1 may be a potential therapeutic target for suppressing rheumatoid arthritis.
Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/imunologia , Receptores Imunológicos/metabolismo , Animais , Células Cultivadas , Colágeno Tipo II/imunologia , Modelos Animais de Doenças , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/metabolismo , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Imunológicos/genéticaRESUMO
Rheumatoid arthritis is an autoimmune disorder characterized by T cell dysregulation. We have shown that an altered peptide ligand (A9) activates T cells to use an alternate signaling pathway that is dependent on FcRγ and spleen tyrosine kinase, resulting in downregulation of inflammation. In the experiments described in this study, we have attempted to determine the molecular basis of this paradox. Three major Src family kinases found in T cells (Lck, Fyn, and Lyn) were tested for activation following stimulation by A9/I-Aq Unexpectedly we found they are not required for T cell functions induced by A9/I-Aq, nor are they required for APL stimulation of cytokines. On the other hand, the induction of the second messenger inositol trisphosphate and the mobilization of calcium are clearly triggered by the APL A9/I-Aq stimulation and are required for cytokine production, albeit the cytokines induced are different from those produced after activation of the canonical pathway. DBA/1 mice doubly deficient in IL-4 and IL-10 were used to confirm that these two cytokines are important for the APL-induced attenuation of arthritis. These studies provide a basis for exploring the effectiveness of analog peptides and the inhibitory T cells they induce as therapeutic tools for autoimmune arthritis.
Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Colágeno Tipo II/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de IgG/metabolismo , Quinase Syk/metabolismo , Linfócitos T/imunologia , Animais , Sinalização do Cálcio , Colágeno Tipo II/genética , Colágeno Tipo II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Interleucina-10/genética , Interleucina-4/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de IgG/genética , Sistemas do Segundo MensageiroRESUMO
BACKGROUND: The linkage between periodontal disease and rheumatoid arthritis is well established. Commonalities among the two are that both are chronic inflammatory diseases characterized by bone loss, an association with the shared epitope susceptibility allele, and anti-citrullinated protein antibodies. METHODS: To explore immune mechanisms that may connect the two seemingly disparate disorders, we measured host immune responses including T-cell phenotype and anti-citrullinated protein antibody production in human leukocyte antigen (HLA)-DR1 humanized C57BL/6 mice following exposure to the Gram-negative anaerobic periodontal disease pathogen Porphyromonas gingivalis. We measured autoimmune arthritis disease expression in mice exposed to P. gingivalis, and also in arthritis-resistant mice by flow cytometry and multiplex cytokine-linked and enzyme-linked immunosorbent assays. We also measured femoral bone density by microcomputed tomography and systemic cytokine production. RESULTS: Exposure of the gingiva of DR1 mice to P. gingivalis results in a transient increase in the percentage of Th17 cells, both in peripheral blood and cervical lymph nodes, a burst of systemic cytokine activity, a loss in femoral bone density, and the generation of anti-citrullinated protein antibodies. Importantly, these antibodies are not produced in response to P. gingivalis treatment of wild-type C57BL/6 mice, and P. gingivalis exposure triggered expression of arthritis in arthritis-resistant mice. CONCLUSIONS: Exposure of gingival tissues to P. gingivalis has systemic effects that can result in disease pathology in tissues that are spatially removed from the initial site of infection, providing evidence for systemic effects of this periodontal pathogen. The elicitation of anti-citrullinated protein antibodies in an HLA-DR1-restricted fashion by mice exposed to P. gingivalis provides support for the role of the shared epitope in both periodontal disease and rheumatoid arthritis. The ability of P. gingivalis to induce disease expression in arthritis-resistant mice provides support for the idea that periodontal infection may be able to trigger autoimmunity if other disease-eliciting factors are already present.
Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Infecções por Bacteroidaceae/imunologia , Periodontite/imunologia , Perda do Osso Alveolar/microbiologia , Perda do Osso Alveolar/patologia , Animais , Artrite Experimental/microbiologia , Artrite Reumatoide/microbiologia , Infecções por Bacteroidaceae/complicações , Ensaio de Imunoadsorção Enzimática , Fêmur/patologia , Citometria de Fluxo , Cadeias HLA-DRB1 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/complicações , Porphyromonas gingivalis , Microtomografia por Raio-XRESUMO
Cytochrome P450 (CYP) 1B1 is implicated in vascular smooth muscle cell migration, proliferation, and hypertension. We assessed the contribution of CYP1B1 to angiotensin (Ang) II-induced abdominal aortic aneurysm (AAA). Male Apoe(-/-)/Cyp1b1(+/+) and Apoe(-/-)/Cyp1b1(-/-) mice were infused with Ang II or its vehicle for 4 weeks; another group of Apoe(-/-)/Cyp1b1(+/+) mice was coadministered the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS) every third day for 4 weeks. On day 28 of Ang II infusion, AAAs were analyzed by ultrasound and ex vivo by Vernier calipers, mice were euthanized, and tissues were harvested. Ang II produced AAAs in Apoe(-/-)/Cyp1b1(+/+) mice; mice treated with TMS or Apoe(-/-)/Cyp1b1(-/-) mice had reduced AAAs. Ang II enhanced infiltration of macrophages, T cells, and platelets and increased platelet-derived growth factor D, Pdgfrb, Itga2, and matrix metalloproteinases 2 and 9 expression in aortic lesions; these changes were inhibited in mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice. Oxidative stress resulted in cyclooxygenase-2 expression in aortic lesions. These effects were minimized in Apoe(-/-)/Cyp1b1(+/+) mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice and by concurrent treatment with the superoxide scavenger 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl. CYP1B1 contributed to the development of Ang II-induced AAA and associated pathogenic events in mice, likely by enhancing oxidative stress and associated signaling events. Thus, CYP1B1 may serve as a target for therapeutic agents for AAA in males.