Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
iScience ; 27(5): 109696, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38689644

RESUMO

Popeye domain containing (POPDC) proteins are predominantly expressed in the heart and skeletal muscle, modulating the K2P potassium channel TREK-1 in a cAMP-dependent manner. POPDC1 and POPDC2 variants cause cardiac conduction disorders with or without muscular dystrophy. Searching for POPDC2-modulated ion channels using a functional co-expression screen in Xenopus oocytes, we found POPDC proteins to modulate the cardiac sodium channel Nav1.5. POPDC proteins downregulate Nav1.5 currents in a cAMP-dependent manner by reducing the surface expression of the channel. POPDC2 and Nav1.5 are both expressed in different regions of the murine heart and consistently POPDC2 co-immunoprecipitates with Nav1.5 from native cardiac tissue. Strikingly, the knock-down of popdc2 in embryonic zebrafish caused an increased upstroke velocity and overshoot of cardiac action potentials. The POPDC modulation of Nav1.5 provides a new mechanism to regulate cardiac sodium channel densities under sympathetic stimulation, which is likely to have a functional impact on cardiac physiology and inherited arrhythmias.

2.
Genes (Basel) ; 15(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540339

RESUMO

Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by ß-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.


Assuntos
Bloqueio Atrioventricular , Cálcio , Adulto , Animais , Humanos , Cálcio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Nó Atrioventricular/metabolismo , Técnicas Eletrofisiológicas Cardíacas/efeitos adversos , Bloqueio Atrioventricular/complicações , Arritmias Cardíacas/genética , Doença do Sistema de Condução Cardíaco
4.
Circ Res ; 133(2): 120-137, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313722

RESUMO

BACKGROUND: Beta-2 adrenergic receptors (ß2ARs) but not beta-2 adrenergic receptors (ß1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and ß adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS: Global signaling between LTCCs and ß adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and ß1AR or ß2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS: LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when ß2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and ß2AR was lost. Interestingly, local stimulation of ß1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via ß1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the ß2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream ß1AR and results in an increase in LTCC current. CONCLUSIONS: Regulation of the LTCC activity by proximity coupling mechanisms occurs only via ß2AR, but not ß1AR. This may explain how ß2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.


Assuntos
Caveolina 3 , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Canais de Cálcio Tipo L/metabolismo
5.
Acta Neuropathol Commun ; 11(1): 4, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624536

RESUMO

The Popeye domain containing (POPDC) genes encode sarcolemma-localized cAMP effector proteins. Mutations in blood vessel epicardial substance (BVES) also known as POPDC1 and POPDC2 have been associated with limb-girdle muscular dystrophy and cardiac arrhythmia. Muscle biopsies of affected patients display impaired membrane trafficking of both POPDC isoforms. Biopsy material of patients carrying mutations in BVES were immunostained with POPDC antibodies. The interaction of POPDC proteins was investigated by co-precipitation, proximity ligation, bioluminescence resonance energy transfer and bimolecular fluorescence complementation. Site-directed mutagenesis was utilised to map the domains involved in protein-protein interaction. Patients carrying a novel homozygous variant, BVES (c.547G > T, p.V183F) displayed only a skeletal muscle pathology and a mild impairment of membrane trafficking of both POPDC isoforms. In contrast, variants such as BVES p.Q153X or POPDC2 p.W188X were associated with a greater impairment of membrane trafficking. Co-transfection analysis in HEK293 cells revealed that POPDC proteins interact with each other through a helix-helix interface located at the C-terminus of the Popeye domain. Site-directed mutagenesis of an array of ultra-conserved hydrophobic residues demonstrated that some of them are required for membrane trafficking of the POPDC1-POPDC2 complex. Mutations in POPDC proteins that cause an impairment in membrane localization affect POPDC complex formation while mutations which leave protein-protein interaction intact likely affect some other essential function of POPDC proteins.


Assuntos
Anticorpos , Proteínas Musculares , Humanos , Células HEK293 , Mutação/genética , Biópsia , Homozigoto , Moléculas de Adesão Celular
6.
Plant Dis ; 107(3): 713-719, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35869584

RESUMO

Two multiyear field trials were conducted to evaluate boxwood cultivars for their susceptibility to the blight pathogens Calonectria pseudonaviculata and C. henricotiae in northern Germany. Fifteen cultivars were included in the first trial from 2007 to 2012, and 46 cultivars were included in the second trial from 2014 to 2017. Both trials were done in a naturally infested field that was supplemented with infected plant tissue added to the soil before planting. Each cultivar had three replicate hedge sections with 10 plants per section, and they were assessed annually for blight severity expressed as proportion of leaves blighted and fallen. Blight severity varied significantly among years (P < 0.0001) and cultivars (P < 0.05) within each trial. In the first trial, mean severity ranged from 0.03 to 0.11 for the most resistant cultivars and 0.35 to 0.96 for the most susceptible ones. Similarly, in the second trial, mean severity ranged from 0.06 to 0.27 and 0.71 to 0.97 for the most resistant and susceptible cultivars, respectively. 'Suffruticosa' was consistently the most susceptible cultivar, followed by 'Marianne', 'Myosotidifolia', 'Raket', and 'Morris Midget'. 'Herrenhausen' was the most resistant cultivar, followed by B. microphylla var. japonica, B. microphylla var. koreana, 'Green Mound', 'Faulkner', and 'Winter Beauty'. This study provides field data showing the performance of boxwood cultivars under different levels of disease pressure in an area where C. henricotiae was dominant. This knowledge will help boxwood growers and gardeners to choose less susceptible cultivars and help plant breeders to select for disease resistance.


Assuntos
Buxus , Doenças das Plantas , Alemanha , Folhas de Planta , Resistência à Doença
7.
CJC Pediatr Congenit Heart Dis ; 2(6Part B): 464-480, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205435

RESUMO

Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.


La cardiopathie congénitale (CC) est l'affection héréditaire la plus commune, soit environ 1 naissance vivante sur 100. Grâce aux progrès réalisés en chirurgie cardiaque, il a été possible de réduire la morbidité et la mortalité associées à la CC, mais les complications, les anomalies extracardiaques et les affections concomitantes demeurent préoccupantes. Dans ce contexte, il est nécessaire de mieux comprendre les fondements génétiques de la CC pour déterminer les variants qui sont à l'origine des complications cliniques. Les cliniciens pourront ainsi proposer des traitements personnalisés en tenant compte du risque et du pronostic dans l'espoir d'améliorer les résultats thérapeutiques et la qualité de vie des patients. Nous revenons ici sur les avancées réalisées dans le séquençage du génome et sur la façon dont elles ont changé notre compréhension des fondements génétiques de la CC. Nous décrivons les techniques expérimentales utilisées pour mettre au jour de nouveaux variants d'intérêt et présentons les obstacles qui empêchent d'utiliser ces connaissances en clinique. Les techniques de séquençage de nouvelle génération permettent de lever le voile sur le rôle de la transmission oligogénique, de la modification épigénétique, de la mosaïque génétique et des variants non codants dans la régulation de l'expression des gènes candidats associés à la CC. La prédiction du risque clinique en fonction de ces facteurs demeure toutefois hasardeuse. Les études sur les cellules souches pluripotentes induites et le séquençage unicellulaire aident à établir le cadre préclinique nécessaire pour déterminer l'importance des nouveaux variants génétiques. Les cliniciens doivent être conscients des bienfaits et de la portée que peut avoir la génomique lorsqu'elle est utilisée de façon responsable. Pour faciliter et accélérer l'intégration clinique de ces nouvelles technologies, les cliniciens doivent s'intéresser de près aux derniers développements scientifiques et techniques s'ils veulent un jour proposer à leurs patients un plan de traitement plus pertinent et plus personnalisé.

8.
Trends Hear ; 26: 23312165221143901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36537084

RESUMO

Speech recognition in rooms requires the temporal integration of reflections which arrive with a certain delay after the direct sound. It is commonly assumed that there is a certain temporal window of about 50-100 ms, during which reflections can be integrated with the direct sound, while later reflections are detrimental to speech intelligibility. This concept was challenged in a recent study by employing binaural room impulse responses (RIRs) with systematically varied interaural phase differences (IPDs) and amplitude of the direct sound and a variable number of reflections delayed by up to 200 ms. When amplitude or IPD favored late RIR components, normal-hearing (NH) listeners appeared to be capable of focusing on these components rather than on the precedent direct sound, which contrasted with the common concept of considering early RIR components as useful and late components as detrimental. The present study investigated speech intelligibility in the same conditions in hearing-impaired (HI) listeners. The data indicate that HI listeners were generally less able to "ignore" the direct sound than NH listeners, when the most useful information was confined to late RIR components. Some HI listeners showed a remarkable inability to integrate across multiple reflections and to optimally "shift" their temporal integration window, which was quite dissimilar to NH listeners. This effect was most pronounced in conditions requiring spatial and temporal integration and could provide new challenges for individual prediction models of binaural speech intelligibility.


Assuntos
Perda Auditiva , Percepção da Fala , Humanos , Limiar Auditivo/fisiologia , Percepção da Fala/fisiologia , Inteligibilidade da Fala , Audição/fisiologia
9.
Trends Hear ; 26: 23312165221130656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203405

RESUMO

Speech-recognition tests are an important component of audiology. However, the development of such tests can be time consuming. The aim of this study was to investigate whether a Text-To-Speech (TTS) system can reduce the cost of development, and whether comparable results can be achieved in terms of speech recognition and listening effort. For this, the everyday sentences of the German Göttingen sentence test were synthesized for both a female and a male speaker using a TTS system. In a preliminary study, this system was rated as good, but worse than the natural reference. Due to the Covid-19 pandemic, the measurements took place online. Each set of speech material was presented at three fixed signal-to-noise ratios. The participants' responses were recorded and analyzed offline. Compared to the natural speech, the adjusted psychometric functions for the synthetic speech, independent of the speaker, resulted in an improvement of the speech-recognition threshold (SRT) by approximately 1.2 dB. The slopes, which were independent of the speaker, were about 15 percentage points per dB. The time periods between the end of the stimulus presentation and the beginning of the verbal response (verbal response time) were comparable for all speakers, suggesting no difference in listening effort. The SRT values obtained in the online measurement for the natural speech were comparable to published data. In summary, the time and effort for the development of speech-recognition tests may be significantly reduced by using a TTS system. This finding provides the opportunity to develop new speech tests with a large amount of speech material.


Assuntos
COVID-19 , Percepção da Fala , COVID-19/diagnóstico , Feminino , Humanos , Esforço de Escuta , Masculino , Pandemias , Fala , Percepção da Fala/fisiologia
10.
EMBO Rep ; 23(12): e55208, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36254885

RESUMO

The establishment of macromolecular complexes by scaffolding proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for cardiac functions. We identify a novel AC scaffold, the Popeye domain-containing (POPDC) protein. The POPDC family of proteins is important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. We show that TREK-1 binds the AC9:POPDC1 complex and copurifies in a POPDC1-dependent manner with AC9 activity in heart. Although the AC9:POPDC1 interaction is cAMP-independent, TREK-1 association with AC9 and POPDC1 is reduced upon stimulation of the ß-adrenergic receptor (ßAR). AC9 activity is required for ßAR reduction of TREK-1 complex formation with AC9:POPDC1 and in reversing POPDC1 enhancement of TREK-1 currents. Finally, deletion of the gene-encoding AC9 (Adcy9) gives rise to bradycardia at rest and stress-induced heart rate variability, a milder phenotype than the loss of Popdc1 but similar to the loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel adaptor for AC9 interactions with TREK-1 to regulate heart rate control.


Assuntos
Adenilil Ciclases , Canais de Potássio , Adenilil Ciclases/genética
11.
Trends Hear ; 26: 23312165221129407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36285532

RESUMO

Listening to speech in noisy environments is challenging and effortful. Factors like the signal-to-noise ratio (SNR), the spatial separation between target speech and noise interferer(s), and possibly also the listener's age might influence perceived listening effort (LE). This study measured and modeled the effect of the spatial separation of target speech and interfering stationary speech-shaped noise on the perceived LE and its relation to the age of the listeners. Reference ranges for the relationship between subjectively perceived LE and SNR for different noise azimuths were established. For this purpose, 70 listeners with normal hearing and from three age groups rated the perceived LE using the Adaptive Categorical Listening Effort Scaling method (ACALES, Krueger et al., 2017a) with speech from the front and noise from 0°, 90°, 135°, or 180° azimuth. Based on these data, the spatial release from listening effort (SRLE) was calculated. The noise azimuth had a strong effect on SRLE, with the highest release for 135°. The binaural speech intelligibility model (BSIM2020, Hauth et al., 2020) predicted SRLE very well at negative SNRs, but overestimated for positive SNRs. No significant effect of age was found on the respective subjective ratings. Therefore, the reference ranges were determined independently of age. These reference ranges can be used for the classification of LE measurements. However, when the increase of the perceived LE with SNR was analyzed, a significant age difference was found between the listeners of the youngest and oldest group when considering the upper range of the LE function.


Assuntos
Percepção da Fala , Humanos , Valores de Referência , Esforço de Escuta , Ruído/efeitos adversos , Audição
12.
Hear Res ; 426: 108598, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995688

RESUMO

Speech perception is strongly affected by noise and reverberation in the listening room, and binaural processing can substantially facilitate speech perception in conditions when target speech and maskers originate from different directions. Most studies and proposed models for predicting spatial unmasking have focused on speech intelligibility. The present study introduces a model framework that predicts both speech intelligibility and perceived listening effort from the same output measure. The framework is based on a combination of a blind binaural processing stage employing a blind equalization cancelation (EC) mechanism, and a blind backend based on phoneme probability classification. Neither frontend nor backend require any additional information, such as the source directions, the signal-to-noise ratio (SNR), or the number of sources, allowing for a fully blind perceptual assessment of binaural input signals consisting of target speech mixed with noise. The model is validated against a recent data set in which speech intelligibility and perceived listening effort were measured for a range of acoustic conditions differing in reverberation and binaural cues [Rennies and Kidd (2018), J. Acoust. Soc. Am. 144, 2147-2159]. Predictions of the proposed model are compared with a non-blind binaural model consisting of a non-blind EC stage and a backend based on the speech intelligibility index. The analyses indicated that all main trends observed in the experiments were correctly predicted by the blind model. The overall proportion of variance explained by the model (R² = 0.94) for speech intelligibility was slightly worse than for the non-blind model (R² = 0.98). For listening effort predictions, both models showed lower prediction accuracy, but still explained significant proportions of the observed variance (R² = 0.88 and R² = 0.71 for the non-blind and blind model, respectively). Closer inspection showed that the differences between data and predictions were largest for binaural conditions at high SNRs, where the perceived listening effort of human listeners tended to be underestimated by the models, specifically by the blind version.


Assuntos
Inteligibilidade da Fala , Percepção da Fala , Humanos , Esforço de Escuta , Ruído/efeitos adversos , Razão Sinal-Ruído , Mascaramento Perceptivo
13.
J Mol Cell Cardiol ; 165: 86-102, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999055

RESUMO

Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Animais , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais
14.
Cereb Cortex ; 32(16): 3457-3471, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34937090

RESUMO

Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.


Assuntos
Moléculas de Adesão Celular , Hipocampo , Potenciação de Longa Duração , Proteínas Musculares , Plasticidade Neuronal , Animais , Moléculas de Adesão Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Transmissão Sináptica
15.
J Cardiovasc Dev Dis ; 8(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940515

RESUMO

The Popeye domain-containing (POPDC) gene family, consisting of Popdc1 (also known as Bves), Popdc2, and Popdc3, encodes transmembrane proteins abundantly expressed in striated muscle. POPDC proteins have recently been identified as cAMP effector proteins and have been proposed to be part of the protein network involved in cAMP signaling. However, their exact biochemical activity is presently poorly understood. Loss-of-function mutations in animal models causes abnormalities in skeletal muscle regeneration, conduction, and heart rate adaptation after stress. Likewise, patients carrying missense or nonsense mutations in POPDC genes have been associated with cardiac arrhythmias and limb-girdle muscular dystrophy. In this review, we introduce the POPDC protein family, and describe their structure function, and role in cAMP signaling. Furthermore, the pathological phenotypes observed in zebrafish and mouse models and the clinical and molecular pathologies in patients carrying POPDC mutations are described.

16.
Cell Mol Life Sci ; 78(19-20): 6669-6687, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34557935

RESUMO

The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-ß, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.


Assuntos
Genoma/genética , Valvas Cardíacas/fisiologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica/métodos , Defeitos dos Septos Cardíacos/genética , Miocárdio/patologia , Organogênese/genética , Marca-Passo Artificial , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/genética
17.
Trends Hear ; 24: 2331216520975630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33305690

RESUMO

The equalization cancellation model is often used to predict the binaural masking level difference. Previously its application to speech in noise has required separate knowledge about the speech and noise signals to maximize the signal-to-noise ratio (SNR). Here, a novel, blind equalization cancellation model is introduced that can use the mixed signals. This approach does not require any assumptions about particular sound source directions. It uses different strategies for positive and negative SNRs, with the switching between the two steered by a blind decision stage utilizing modulation cues. The output of the model is a single-channel signal with enhanced SNR, which we analyzed using the speech intelligibility index to compare speech intelligibility predictions. In a first experiment, the model was tested on experimental data obtained in a scenario with spatially separated target and masker signals. Predicted speech recognition thresholds were in good agreement with measured speech recognition thresholds with a root mean square error less than 1 dB. A second experiment investigated signals at positive SNRs, which was achieved using time compressed and low-pass filtered speech. The results demonstrated that binaural unmasking of speech occurs at positive SNRs and that the modulation-based switching strategy can predict the experimental results.


Assuntos
Mascaramento Perceptivo , Percepção da Fala , Humanos , Ruído/efeitos adversos , Razão Sinal-Ruído , Inteligibilidade da Fala
18.
BMC Mol Cell Biol ; 21(1): 88, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261556

RESUMO

BACKGROUND: Popeye domain-containing proteins 1 and 2 (POPDC1 and POPDC2) are transmembrane proteins involved in cyclic AMP-mediated signalling processes and are required for normal cardiac pacemaking and conduction. In order to identify novel protein interaction partners, POPDC1 and 2 proteins were attached to beads and compared by proteomic analysis with control beads in the pull-down of proteins from cultured human skeletal myotubes. RESULTS: There were highly-significant interactions of both POPDC1 and POPDC2 with XIRP1 (Xin actin binding repeat-containing protein 1), actin and, to a lesser degree, annexin A5. In adult human skeletal muscle, both XIRP1 and POPDC1/2 were present at the sarcolemma and in T-tubules. The interaction of POPDC1 with XIRP1 was confirmed in adult rat heart extracts. Using new monoclonal antibodies specific for POPDC1 and POPDC2, both proteins, together with XIRP1, were found mainly at intercalated discs but also at T-tubules in adult rat and human heart. CONCLUSIONS: Mutations in human POPDC1, POPDC2 and in human XIRP1, all cause pathological cardiac arrhythmias, suggesting a possible role for POPDC1/2 and XIRP1 interaction in normal cardiac conduction.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cardiopatias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Sarcolema/metabolismo , Actinas/metabolismo , Adulto , Animais , Anexina A5/metabolismo , Anticorpos Monoclonais/metabolismo , Células COS , Chlorocebus aethiops , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ligação Proteica , Ratos Sprague-Dawley
19.
J Cardiovasc Dev Dis ; 7(4)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255284

RESUMO

The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.

20.
Aging Clin Exp Res ; 32(10): 2115-2131, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32865757

RESUMO

BACKGROUND: In December 2019, a novel human-infecting coronavirus, SARS-CoV-2, had emerged. The WHO has classified the epidemic as a "public health emergency of international concern". A dramatic situation has unfolded with thousands of deaths, occurring mainly in the aged and very ill people. Epidemiological studies suggest that immune system function is impaired in elderly individuals and these subjects often present a deficiency in fat-soluble and hydrosoluble vitamins. METHODS: We searched for reviews describing the characteristics of autoimmune diseases and the available therapeutic protocols for their treatment. We set them as a paradigm with the purpose to uncover common pathogenetic mechanisms between these pathological conditions and SARS-CoV-2 infection. Furthermore, we searched for studies describing the possible efficacy of vitamins A, D, E, and C in improving the immune system function. RESULTS: SARS-CoV-2 infection induces strong immune system dysfunction characterized by the development of an intense proinflammatory response in the host, and the development of a life-threatening condition defined as cytokine release syndrome (CRS). This leads to acute respiratory syndrome (ARDS), mainly in aged people. High mortality and lethality rates have been observed in elderly subjects with CoV-2-related infection. CONCLUSIONS: Vitamins may shift the proinflammatory Th17-mediated immune response arising in autoimmune diseases towards a T-cell regulatory phenotype. This review discusses the possible activity of vitamins A, D, E, and C in restoring normal antiviral immune system function and the potential therapeutic role of these micronutrients as part of a therapeutic strategy against SARS-CoV-2 infection.


Assuntos
Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/dietoterapia , Infecções por Coronavirus/prevenção & controle , Citocinas/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/dietoterapia , Pneumonia Viral/prevenção & controle , Vitaminas/imunologia , Vitaminas/uso terapêutico , Idoso , Ácido Ascórbico/imunologia , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Betacoronavirus/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Humanos , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Vitamina A/imunologia , Vitamina A/farmacologia , Vitamina A/uso terapêutico , Vitamina D/imunologia , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitamina E/imunologia , Vitamina E/farmacologia , Vitamina E/uso terapêutico , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA