Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adsorption (Boston) ; 24(6): 531-539, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956405

RESUMO

This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess carbon dioxide adsorption isotherms on NIST Reference Material RM 8852 (ammonium ZSM-5 zeolite), at 293.15 K (20 °C) from 1 kPa up to 4.5 MPa. Eleven laboratories participated in this exercise and, for the first time, high-pressure adsorption reference data are reported using a reference material. An empirical reference equation n e x = d ( 1 + exp [ - ln ( P ) + a / b ] ) c , [n ex -surface excess uptake (mmol/g), P-equilibrium pressure (MPa), a = -6.22, b = 1.97, c = 4.73, and d = 3.87] along with the 95% uncertainty interval (U k = 2 = 0.075 mmol/g) were determined for the reference isotherm using a Bayesian, Markov Chain Monte Carlo method. Together, this zeolitic reference material and the associated adsorption data provide a means for laboratories to test and validate high-pressure adsorption equipment and measurements. Recommendations are provided for measuring reliable high-pressure adsorption isotherms using this material, including activation procedures, data processing methods to determine surface excess uptake, and the appropriate equation of state to be used.

2.
Phys Chem Chem Phys ; 19(43): 29449-29460, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29077117

RESUMO

The CO2 adsorption properties of hybrid organic-inorganic MCM-41 silicas with different particle sizes are described here. Micrometric to nanometric MCM-41 silicas are functionalized by introducing amino groups via grafting of 3-[2-(2-aminoethyl)aminoethyl]aminopropyltrimethoxysilane (PAPTS). A combination of FTIR and SS-NMR spectroscopies is adopted to distinguish between physisorbed and chemisorbed CO2. A higher amount of CO2 is physisorbed in the nanometric sample because of a higher pore volume, whereas chemisorbed (carbamate and acid carbamic) species are more abundant in the micrometric sample. The adsorption process is also quantitatively studied using three different techniques (i.e. volumetric measurements, Thermo-Gravimetric Analysis (TGA) and Zero Length Column (ZLC) analysis), especially focusing on the reversibility of the reactions between CO2 and amino groups. The three techniques show a higher CO2 adsorption capacity for MCM-41 with nanometric size compared to the micrometric one. Finally, the process is studied at different temperatures (i.e. from 35 to 90 °C) in order to find the best operating conditions.

3.
Phys Chem Chem Phys ; 19(21): 14114-14128, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28524206

RESUMO

Hybrid organic-inorganic SBA-15 silicas functionalized with increasing amounts of amino groups were studied in this work aiming to evaluate the effects of their physico-chemical properties on CO2 capture ability. Three different amino-silane species were used: 3-aminopropyltriethoxysilane (APTS), 3-(2-aminoethyl)aminopropyltrimethoxysilane (EAPTS) and 3-[2-(2-aminoethyl)aminoethyl] aminopropyltrimethoxysilane (PAPTS). More specifically, samples were prepared by using two methods, following a post-synthesis grafting procedure and a one-pot preparation method. Experimental and computational techniques were used to study the structural and textural properties of the obtained samples and their surface species in relation to the adopted preparation method. For the most reactive samples, additional hints on the interactions of organosilane species with the silica surface were obtained by a combination of IR and SS-NMR spectroscopy, with particular emphasis on the effects of the silane chain length on the mobility of the organic species. Advanced complementary solid-state NMR techniques provided deeper information on the interactions of organosilane species with the silica surface. Finally, the amount of CO2 adsorbed was estimated by comparing the classical microcalorimetric analysis method with a new type of screening test, the Zero Length Column analysis, which is able to evaluate small amounts of samples in a very short time and the adsorption properties of the adsorbents. The reactivity of the amino-modified silica samples is deeply influenced by both the preparation route and by the type of organosilane used for the functionalization of the materials. In particular, samples prepared by the post-synthesis grafting procedure and containing higher amount of amino groups in the chain are more reactive, following the order PAPTS > EAPTS > APTS.

4.
Faraday Discuss ; 192: 181-195, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27476480

RESUMO

The zero length column (ZLC) technique is used to investigate the stability of Mg- and Ni-CPO-27 metal-organic framework (MOF) crystals in the presence of water and humid flue gas. The design of the ZLC enables the stability test to be conducted over a considerably shorter time period and with lower gas consumption than other conventional techniques. A key advantage over other experimental methods for testing the stability of adsorbents is the fact that the ZLC allows us to quantify the amount adsorbed of every component present in the gas mixture. The developed protocol is based on a two-stage stability test. The samples were first exposed to a humid carbon dioxide and helium mixture in order to study the effect of water on the carbon dioxide adsorption capacity of the samples. In the second stage the samples were exposed to a flue gas mixture containing water. From the preliminary water stability test, the Ni-sample exhibited the highest tolerance to the presence of water, retaining approximately 85% of its pristine CO2 capacity. The Mg-MOFs deactivated rapidly in the presence of water. The Ni-CPO-27 was then selected for the second stage of the protocol in which the material was exposed to the wet flue gas. The sample showed an initial drop in CO2 capacity after the first exposure to the wet flue gas, followed by a stabilisation of the performance over several cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA