Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pediatr Exerc Sci ; 34(1): 20-27, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517340

RESUMO

PURPOSE: To examine the reliability, validity, and performance characteristics of the 10 to 5 repeated jump test (10-5 RJT) in adolescent male athletes. The 10-5 RJT has been shown to be a valid and reliable test of reactive strength index (RSI) in older adolescents (age 17-19 y), but less is known in younger adolescent athletes at different stages of maturity. METHODS: Athletes (age 11-17 y) completed the 10-5 RJT on 2 days, 1 week apart, to examine the reliability (n = 41), validity (n = 18) of the test. Athletes were classified as pre, circa, or post peak height velocity (PHV) height velocity using maturity offset to examine the effect of maturation status on RSI, flight time (FT), ground contact time (GCT), and jump height (JH) (n = 68) using a cross-sectional design. RESULTS: Paired samples t tests showed no significant differences (P ≥ .05), and Bland-Altman analysis showed no bias and close limits of agreement for RSI, JH, FT, and GCT between the contact mat and force plate. Interday reliability was rated excellent for RSI (intraclass correlation coefficient = .91) and good for GCT, FT, and JH (intraclass correlation coefficient = .81-.85). All variables had a coefficient of variation ≤ 10%. RSI increased across maturation groups, with significant differences between pre-PHV and post-PHV groups (P = .014, d = 1.00). CONCLUSION: The 10-5 RJT is a valid and reliable test for adolescent male athletes. Greater RSI with advancing maturity was primarily due to increased FT and JH, with GCT remaining similar.


Assuntos
Desempenho Atlético , Adolescente , Adulto , Atletas , Criança , Estudos Transversais , Teste de Esforço , Humanos , Masculino , Força Muscular , Reprodutibilidade dos Testes , Adulto Jovem
2.
Front Rehabil Sci ; 2: 697082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36188864

RESUMO

Blood flow restriction (BFR) training is increasing in popularity in the fitness and rehabilitation settings due to its role in optimizing muscle mass and strength as well as cardiovascular capacity, function, and a host of other benefits. However, despite the interest in this area of research, there are likely some perceived barriers that practitioners must overcome to effectively implement this modality into practice. These barriers include determining BFR training pressures, access to appropriate BFR training technologies for relevant demographics based on the current evidence, a comprehensive and systematic approach to medical screening for safe practice and strategies to mitigate excessive perceptual demands of BFR training to foster long-term compliance. This manuscript attempts to discuss each of these barriers and provides evidence-based strategies and direction to guide clinical practice and future research.

5.
Front Physiol ; 10: 1099, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551800

RESUMO

Resistance training with blood flow restriction is typically performed during single exercises for the lower- or upper-body, which may not replicate real world programming. The present study examined the change in muscle strength and mass in a young healthy population during an 8-week whole body resistance training program, as well as monitoring these adaptations following a 4-week detraining period. Thirty-nine participants (27 males, 12 females) were allocated into four groups: blood flow restriction training (BFR-T); moderate-heavy load training (HL-T), light-load training (LL-T) or a non-exercise control (CON). Testing measurements were taken at Baseline, during mid-point of training (week 4), end of training (week 8) and following four weeks of detraining (week 12) and included anthropometrics, body composition, muscle thickness (MTH) at seven sites, and maximal dynamic strength (1RM) for six resistance exercises. Whole body resistance training with BFR significantly improved lower- and upper-body strength (overall; 11% increase in total tonnage), however, this was similar to LL-T (12%), but both groups were lower in comparison with HL-T (21%) and all groups greater than CON. Some markers of body composition (e.g., lean mass) and MTH significantly increased over the course of the 8-week training period, but these were similar across all groups. Following detraining, whole body strength remained significantly elevated for both BFR-T (6%) and HL-T (14%), but only the HL-T group remained higher than all other groups. Overall, whole body resistance training with blood flow restriction was shown to be an effective training mode to increase muscular strength and mass. However, traditional moderate-heavy load resistance training resulted in greater adaptations in muscle strength and mass as well as higher levels of strength maintenance following detraining.

6.
Front Physiol ; 10: 533, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156448

RESUMO

The current manuscript sets out a position stand for blood flow restriction (BFR) exercise, focusing on the methodology, application and safety of this mode of training. With the emergence of this technique and the wide variety of applications within the literature, the aim of this position stand is to set out a current research informed guide to BFR training to practitioners. This covers the use of BFR to enhance muscular strength and hypertrophy via training with resistance and aerobic exercise and preventing muscle atrophy using the technique passively. The authorship team for this article was selected from the researchers focused in BFR training research with expertise in exercise science, strength and conditioning and sports medicine.

7.
J Sports Sci ; 36(2): 123-130, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28143359

RESUMO

The purpose of the study was to investigate the current use of blood flow restriction (BFR) by practitioners during exercise/training. A questionnaire was developed and data were obtained from 250 participants, with 115 stating that they had prescribed BFR as an intervention. The most common exercise intervention used in combination with BFR was resistance exercise (99/115), followed by during passive (30/115) conditions, and during aerobic exercise (22/115). The main outcome measure for using the technique was to increase muscle mass (32.6%) followed by rehabilitation from injury (24.2%). Over half of respondents (57.4%) reported that they did not use the same cuff widths for the lower body and upper body, with varying final restriction pressures also being utilised during each different exercise modality. Most practitioners performed the technique for ~10 min each training session, 1-4 times per week. Eighty percent of practitioners rated the use of BFR as very good-excellent. The incidence rate of side effects was largest for delayed onset muscle soreness (39.2%), numbness (18.5%), fainting/dizziness (14.6%) and bruising (13.1%). These results indicate that the use of BFR training is widespread amongst practitioners; however, care should be taken to ensure that practice matches current research to ensure the safety of this technique.


Assuntos
Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido/métodos , Adolescente , Adulto , Traumatismos em Atletas/reabilitação , Estudos Transversais , Exercício Físico/fisiologia , Terapia por Exercício/efeitos adversos , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Treinamento Resistido/efeitos adversos , Inquéritos e Questionários , Adulto Jovem
9.
Physiol Rep ; 5(3)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28183863

RESUMO

The hemodynamics of light-load exercise with an applied blood-flow restriction (BFR) have not been extensively compared between light-intensity, BFR, and high-intensity forms of both resistance and aerobic exercise in the same participant population. Therefore, the purpose of this study was to use a randomized crossover design to examine the hemodynamic responses to resistance and aerobic BFR exercise in comparison with a common high-intensity and light-intensity non-BFR exercise. On separate occasions participants completed a leg-press (resistance) or treadmill (aerobic) trial. Each trial comprised a light-intensity bout (LI) followed by a light-intensity bout with BFR (80% resting systolic blood pressure (LI+BFR)), then a high-intensity bout (HI). To characterize the hemodynamic response, measures of cardiac output, stroke volume, heart rate and blood pressure were taken at baseline and exercise for each bout. Exercising hemodynamics for leg-press LI+BFR most often resembled those for HI and were greater than LI (e.g. for systolic blood pressure LI+BFR = 152 ± 3 mmHg; HI = 153 ± 3; LI = 143 ± 3 P < 0.05). However, exercising hemodynamics for treadmill LI+BFR most often resembled those for LI and were lower than HI (e.g. for systolic pressure LI+BFR = 124 ± 2 mmHg; LI = 123 ± 2; HI = 140 ± 3 P < 0.05). In conclusion, the hemodynamic response for light aerobic (walking) BFR exercise suggests this mode of BFR exercise may be preferential for chronic use to develop muscle size and strength, and other health benefits in certain clinical populations that are contraindicated to heavy-load resistance exercise.


Assuntos
Exercício Físico , Hemodinâmica , Fluxo Sanguíneo Regional , Treinamento Resistido , Adulto , Estudos Cross-Over , Teste de Esforço , Humanos , Masculino , Esforço Físico , Caminhada , Adulto Jovem
10.
J Strength Cond Res ; 31(11): 3101-3108, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28118308

RESUMO

Brandner, CR, and Warmington, SA. Delayed onset muscle soreness and perceived exertion after blood flow restriction exercise. J Strength Cond Res 31(11): 3101-3108, 2017-The purpose of this study was to determine the perceptual responses to resistance exercise with heavy loads (80% 1 repetition maximum [1RM]), light loads (20% 1RM), or light loads in combination with blood flow restriction (BFR). Despite the use of light loads, it has been suggested that the adoption of BFR resistance exercise may be limited because of increases in delayed onset muscle soreness (DOMS) and perceived exertion. Seventeen healthy untrained males participated in this balanced, randomized cross-over study. After 4 sets of elbow-flexion exercise, participants reported ratings of perceived exertion (RPE), with DOMS also recorded for 7 days after each trial. Delayed onset muscle soreness was significantly greater for low-pressure continuous BFR (until 48 hours postexercise) and high-pressure intermittent BFR (until 72 hours postexercise) than for traditional heavy-load resistance exercise and light-load resistance exercise. In addition, RPE was higher for heavy-load resistance exercise and high-pressure intermittent BFR than for low-pressure continuous BFR, with all trials greater than light-load resistance exercise. For practitioners working with untrained participants, this study provides evidence to suggest that to minimize the perception of effort and postexercise muscle soreness associated with BFR resistance exercise, continuous low-pressure application may be more preferential than intermittent high-pressure application. Importantly, these perceptual responses are relatively short-lived (∼2 days) and have previously been shown to subside after a few exercise sessions. Combined with smaller initial training volumes (set × repetitions), this may limit RPE and DOMS to strengthen uptake and adherence and assist in program progression for muscle hypertrophy and gains in strength.


Assuntos
Mialgia/fisiopatologia , Percepção , Esforço Físico/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido/métodos , Adulto , Estudos Cross-Over , Feminino , Hemodinâmica , Humanos , Masculino , Músculo Esquelético/fisiologia , Pressão , Medicina Esportiva , Adulto Jovem
12.
Front Hum Neurosci ; 9: 652, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696864

RESUMO

We used transcranial magnetic stimulation (TMS) to investigate whether an acute bout of resistance exercise with blood flow restriction (BFR) stimulated changes in corticomotor excitability (motor evoked potential, MEP) and short-interval intracortical inhibition (SICI), and compared the responses to two traditional resistance exercise methods. Ten males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (1) heavy-load (HL: 80% one-repetition maximum [1-RM]); (2) light-load (LL; 20% 1-RM) and two other light-load trials with BFR applied; (3) continuously at 80% resting systolic blood pressure (BFR-C); or (4) intermittently at 130% resting systolic blood pressure (BFR-I). MEP amplitude and SICI were measured using TMS at baseline, and at four time-points over a 60 min post-exercise period. MEP amplitude increased rapidly (within 5 min post-exercise) for BFR-C and remained elevated for 60 min post-exercise compared with all other trials. MEP amplitudes increased for up to 20 and 40 min for LL and BFR-I, respectively. These findings provide evidence that BFR resistance exercise can modulate corticomotor excitability, possibly due to altered sensory feedback via group III and IV afferents. This response may be an acute indication of neuromuscular adaptations that underpin changes in muscle strength following a BFR resistance training programme.

13.
Eur J Appl Physiol ; 115(11): 2293-302, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26142277

RESUMO

PURPOSE: Light-load blood flow restriction exercise (BFRE) may provide a novel training method to limit the effects of age-related muscle atrophy in older adults. Therefore, the purpose of this study was to compare the haemodynamic response to resistance and aerobic BFRE between young adults (YA; n = 11; 22 ± 1 years) and older adults (OA; n = 13; 69 ± 1 years). METHOD: On two occasions, participants completed BFRE or control exercise (CON). One occasion was leg press (LP; 20 % 1-RM) and the other was treadmill walking (TM; 4 km h(-1)). Haemodynamic responses (HR, Q, SV and BP) were recorded during baseline and exercise. RESULT: At baseline, YA and OA were different for some haemodynamic parameters (e.g. BP, SV). The relative responses to BFRE were similar between YA and OA. Blood pressures increased more with BFRE, and also for LP over TM. Q increased similarly for BFRE and CON (in both LP and TM), but with elevated HR and reduced SV (TM only). CONCLUSION: While BFR conferred slightly greater haemodynamic stress than CON, this was lower for walking than leg-press exercise. Given similar response magnitudes between YA and OA, these data support aerobic exercise being a more appropriate BFRE for prescription in older adults that may contribute to limiting the effects of age-related muscle atrophy.


Assuntos
Exercício Físico/fisiologia , Hemodinâmica/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Idoso , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Músculo Esquelético/fisiologia , Treinamento Resistido , Volume Sistólico/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA