Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1181: 338873, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556237

RESUMO

S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are important metabolites in the one-carbon cycle that modulates cellular methylation required for proliferation and epigenetic regulation. Their concentrations, synthesis, and turnover are difficult to determine conveniently and reliably. We have developed such a method by coupling a simple and rapid purification scheme that efficiently captures both compounds, with high sensitivity, sample throughput direct infusion nanoelectrospray ultra-high-resolution Fourier transform mass spectrometry (DI-nESI-UHR-FTMS). This method is compatible with Stable Isotope-Resolved Metabolomic (SIRM) analysis of numerous other metabolites. The limits of detection for both SAM and SAH were <1 nM, and the linearity range was up to 1000 nM. The method was first illustrated for SAM/SAH analysis of mouse livers, and lung adenocarcinoma A549 cells. We then applied the method to track 13C1-CH3-Met incorporation into SAM and 13C6-glucose transformation into SAM and SAH via de novo synthesis. We further used the method to show the distinct effects on A549 and H1299 cells with treatment of anti-cancer methylseleninic acid (MSA), selenite, and selenomethionine, notably SAM depletion and increased SAM to SAH ratio by MSA, which implicates altered epigenetic regulation.


Assuntos
S-Adenosil-Homocisteína , S-Adenosilmetionina , Proteínas Adaptadoras de Transdução de Sinal , Animais , Epigênese Genética , Análise de Fourier , Isótopos , Espectrometria de Massas , Metabolômica , Camundongos
2.
Nano Lett ; 20(8): 6135-6141, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32628854

RESUMO

We present the application of multiphoton in vivo fluorescence correlation spectroscopy (FCS) of fluorescent nanoparticles for the measurement of cerebral blood flow with excellent spatial and temporal resolution. Through the detection of single nanoparticles within the complex vessel architecture of a live mouse, this new approach enables the quantification of nanoparticle dynamics occurring within the vasculature along with simultaneous measurements of blood flow properties in the brain. In addition to providing high resolution blood flow measurements, this approach enables real-time quantification of nanoparticle concentration, degradation, and transport. This method is capable of quantifying flow rates at each pixel with submicron resolution to enable monitoring of dynamic changes in flow rates in response to changes in the animal's physiological condition. Scanning the excitation beam using FCS provides pixel by pixel mapping of flow rates with subvessel resolution across capillaries 300 µm deep in the brains of mice.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Nanopartículas , Animais , Circulação Cerebrovascular , Camundongos , Espectrometria de Fluorescência
3.
Cell Metab ; 30(4): 689-705.e6, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353261

RESUMO

Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.


Assuntos
Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Corpos de Inclusão/efeitos dos fármacos , Doença de Lafora/terapia , alfa-Amilases Pancreáticas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Imunoglobulina G/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , alfa-Amilases Pancreáticas/uso terapêutico , Ratos , Proteínas Recombinantes de Fusão/uso terapêutico
4.
Front Aging Neurosci ; 10: 180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962946

RESUMO

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for late onset Alzheimer's Disease (AD), and is associated with impairments in cerebral metabolism and cerebrovascular function. A substantial body of literature now points to E4 as a driver of multiple impairments seen in AD, including blunted brain insulin signaling, mismanagement of brain cholesterol and fatty acids, reductions in blood brain barrier (BBB) integrity, and decreased cerebral glucose uptake. Various neuroimaging techniques, in particular positron emission topography (PET) and magnetic resonance imaging (MRI), have been instrumental in characterizing these metabolic and vascular deficits associated with this important AD risk factor. In the current mini-review article, we summarize the known effects of APOE on cerebral metabolism and cerebrovascular function, with a special emphasis on recent findings via neuroimaging approaches.

5.
Oncotarget ; 8(44): 77436-77452, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100399

RESUMO

Myelodysplastic syndromes (MDS) are a diverse group of malignant clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, dysplastic cell morphology in one or more hematopoietic lineages, and a risk of progression to acute myeloid leukemia (AML). Approximately 50% of MDS patients respond to current FDA-approved drug therapies but a majority of responders relapse within 2-3 years. There is therefore a compelling need to identify potential new therapies for MDS treatment. We utilized the MDS-L cell line to investigate the anticancer potential and mechanisms of action of a plant-derived compound, Withaferin A (WFA), in MDS. WFA was potently cytotoxic to MDS-L cells but had no significant effect on the viability of normal human primary bone marrow cells. WFA also significantly reduced engraftment of MDS-L cells in a xenotransplantation model. Through transcriptome analysis, we identified reactive oxygen species (ROS)-activated JNK/AP-1 signaling as a major pathway mediating apoptosis of MDS-L cells by WFA. We conclude that the molecular mechanism mediating selective cytotoxicity of WFA on MDS-L cells is strongly associated with induction of ROS. Therefore, pharmacologic manipulation of redox biology could be exploited as a selective therapeutic target in MDS.

6.
J Leukoc Biol ; 82(6): 1393-400, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17726153

RESUMO

Syngeneic graft-vs.-host disease (SGVHD) develops in rodents following the treatment of lethally irradiated, bone marrow (BM) reconstituted animals with a short course of the immunosuppressive agent cyclosporine A (CsA). Using an in vivo depletion approach, we recently demonstrated that CD4(+), but not CD8(+), T cells participated in inducing SGVHD. Studies were therefore undertaken to adoptively transfer SGVHD into lethally irradiated, syngeneic BM reconstituted secondary recipients. Whole T cell populations as well as purified CD4(+)T cells isolated from SGVHD, but not normal or transplant control, animals mediated the transfer of SGVHD into secondary recipients. These cells have an apparent specificity for enteric bacterial antigens. The pathologic process that developed was identical to that observed in the animals with de novo SGVHD after syngeneic BMT and CsA therapy. It was shown that a radiation-sensitive mechanism prevented the transfer of SGVHD into normal, nonirradiated secondary recipients. The ability to reproducibly transfer SGVHD into secondary recipients will enhance our ability to study regulatory mechanisms that are altered during CsA therapy and permit the development of murine CsA-induced SGVHD.


Assuntos
Transferência Adotiva , Linfócitos T CD4-Positivos/transplante , Doença Enxerto-Hospedeiro/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Separação Celular , Feminino , Doença Enxerto-Hospedeiro/induzido quimicamente , Terapia de Imunossupressão , Inflamação , Camundongos , Fenótipo , Transplante Isogênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA