Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 27(49): 494001, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27823991

RESUMO

Shifts from the expected nuclear magnetic resonance frequencies of antimony and bismuth donors in silicon of greater than a megahertz are observed in electrically detected magnetic resonance spectra. Defects created by ion implantation of the donors are discussed as the source of effective electric field gradients generating these shifts via quadrupole interaction with the nuclear spins. The experimental results are modeled quantitatively by molecular orbital theory for a coupled pair consisting of a donor and a spin-dependent recombination readout center.

2.
J Magn Reson ; 254: 62-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25828243

RESUMO

We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 µs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

3.
Phys Rev Lett ; 108(12): 126806, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540613

RESUMO

Doping of semiconductor nanocrystals (NCs) is expected to enable the control of key NC properties, yet its practical exploitation requires an understanding of exchange interactions when multiple dopants are incorporated in a single NC. Here, we experimentally probe the exchange of donor dimers in NCs via a deviation of their triplet-state magnetic resonance from Curie paramagnetism. We show that the exchange coupling of the closely spaced donors can be well described by effective mass theory, which allows the consideration of statistical effects crucial in NC ensembles. While a dimer induces discrete states in a NC, their energy splitting differs by up to 3 orders of magnitude for randomly placed dimers in a NC ensemble, due to an enormous dependence of the exchange energy on the dimer configuration.

4.
Rev Sci Instrum ; 82(7): 074707, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806214

RESUMO

We report on the development and testing of a coplanar stripline antenna that is designed for integration in a magneto-photoluminescence experiment to allow coherent control of individual electron spins confined in single self-assembled semiconductor quantum dots. We discuss the design criteria for such a structure which is multi-functional in the sense that it serves not only as microwave delivery but also as electrical top gate and shadow mask for the single quantum dot spectroscopy. We present test measurements on hydrogenated amorphous silicon, demonstrating electrically detected magnetic resonance using the in-plane component of the oscillating magnetic field created by the coplanar stripline antenna necessary due to the particular geometry of the quantum dot spectroscopy. From reference measurements using a commercial electron spin resonance setup in combination with finite element calculations simulating the field distribution in the structure, we obtain a magnetic field of 0.12 mT at the position where the quantum dots would be integrated into the device. The corresponding π-pulse time of ≈0.5 µs meets the requirements set by the high sensitivity optical spin read-out scheme developed for the quantum dot.

5.
Phys Rev Lett ; 107(4): 046601, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21867026

RESUMO

We systematically measured the dc voltage V(ISH) induced by spin pumping together with the inverse spin Hall effect in ferromagnet-platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors, V(ISH) invariably has the same polarity, and scales with the magnetization precession cone angle. These findings, together with the spin mixing conductance derived from the experimental data, quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.

6.
Phys Rev Lett ; 106(11): 117601, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469894

RESUMO

Surface acoustic waves (SAWs) in the GHz frequency range are exploited for the all-elastic excitation and detection of ferromagnetic resonance (FMR) in a ferromagnetic-ferroelectric (Ni/LiNbO(3)) hybrid device. We measure the SAW magnetotransmission at room temperature as a function of frequency, external magnetic field magnitude, and orientation. Our data are well described by a modified Landau-Lifshitz-Gilbert approach, in which a virtual, strain-induced tickle field drives the magnetization precession. This causes a distinct magnetic field orientation dependence of elastically driven FMR that we observe in both model and experiment.

7.
Phys Rev Lett ; 106(3): 037601, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21405299

RESUMO

We demonstrate an electroelastic control of the hyperfine interaction between nuclear and electronic spins opening an alternative way to address and couple spin-based qubits. The hyperfine interaction is measured by electrically detected magnetic resonance in phosphorus-doped silicon epitaxial layers employing a hybrid structure consisting of a silicon-germanium virtual substrate and a piezoelectric actuator. By applying a voltage to the actuator, the hyperfine interaction is changed by up to 0.9 MHz, which would be enough to shift the phosphorus donor electron spin out of resonance by more than one linewidth in isotopically purified 28Si.


Assuntos
Elasticidade , Eletricidade , Fósforo/química , Silício/química , Teoria Quântica
8.
Phys Rev Lett ; 100(2): 026803, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18232904

RESUMO

We have investigated the role of doping and paramagnetic states on the electronic transport of networks assembled from freestanding Si nanocrystals (Si-NCs). Electrically detected magnetic resonance (EDMR) studies on Si-NCs films, which show a strong increase of conductivity with doping of individual Si-NCs, reveal that P donors and Si dangling bonds contribute to dark conductivity via spin-dependent hopping, whereas in photoconductivity, these states act as spin-dependent recombination centers of photogenerated electrons and holes. Comparison between EDMR and conventional electron paramagnetic resonance shows that different subsets of P-doped nanocrystals contribute to the different transport processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA