Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arthroplast Today ; 25: 101314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38317706

RESUMO

Revision surgery is paramount to cure chronic prosthetic joint infections because these infections are associated with biofilms on prosthetics that conventional antibiotics cannot eradicate. However, there is a paucity of research on where in vivo biofilms are located on infected prosthetics. Consequently, the objective of this pilot study was to address this gap in knowledge by staining 5 chronically infected prosthetics, that were removed at the time of revision surgery, with methylene blue. Scanning electron microscopic images were then taken of the methylene blue-stained areas to visualize biofilms. The findings show that all chronically infected prosthetics had biofilms located on the bone-prosthetic interface, yet only 2 had biofilms also located on the prosthetic interface exposed to synovial fluid. Subsequently, this pilot study provides a pathophysiological understanding of why the current treatment paradigm for chronic periprosthetic joint infection requires a revision surgery and not debridement and an implant retention surgery.

2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338665

RESUMO

We report the case of a four-year-old male patient with a complex medical history born prematurely as the result of intrauterine growth restriction due to placental insufficiency. His clinical manifestations included severe neurodevelopmental deficits, global developmental delay, Pierre-Robin sequence, and intractable epilepsy with both generalized and focal features. The proband's low levels of citrulline and lactic acidosis provoked by administration of Depakoke were evocative of a mitochondrial etiology. The proband's genotype-phenotype correlation remained undefined in the absence of nuclear and mitochondrial pathogenic variants detected by deep sequencing of both genomes. However, live-cell mitochondrial metabolic investigations provided evidence of a deficient oxidative-phosphorylation pathway responsible for adenosine triphosphate (ATP) synthesis, leading to chronic energy crisis in the proband. In addition, our metabolic analysis revealed metabolic plasticity in favor of glycolysis for ATP synthesis. Our mitochondrial morphometric analysis by transmission electron microscopy confirmed the suspected mitochondrial etiology, as the proband's mitochondria exhibited an immature morphology with poorly developed and rare cristae. Thus, our results support the concept that suboptimal levels of intrauterine oxygen and nutrients alter fetal mitochondrial metabolic reprogramming toward oxidative phosphorylation (OXPHOS) leading to a deficient postnatal mitochondrial energy metabolism. In conclusion, our collective studies shed light on the long-term postnatal mitochondrial pathophysiology caused by intrauterine growth restriction due to idiopathic placental insufficiency and its negative impact on the energy-demanding development of the fetal and postnatal brain.


Assuntos
Retardo do Crescimento Fetal , Insuficiência Placentária , Masculino , Humanos , Feminino , Gravidez , Pré-Escolar , Retardo do Crescimento Fetal/metabolismo , Insuficiência Placentária/metabolismo , Insuficiência Placentária/patologia , Placenta/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA