Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941280

RESUMO

Gait impairments is a common condition in post-stroke subjects. We recently presented a wearable ankle exoskeleton called G-Exos, which showed that the device assisted in the ankle's dorsiflexion and inversion/reversion movements. The aim of the current pilot study was to explore spatiotemporal gait parameters and center of pressure trajectories associated with the use of the G-Exos in stroke participants. Three post-stroke subjects (52-63 years, 2 female/1 male) walked 160-meter using the G-Exos on the affected limb, on a protocol divided into 4 blocks of 40-meters: (I) without the exoskeleton, (II) with systems hybrid system, (III) active only and (IV) passive only. The results showed that the use of the exoskeleton improved swing and stance phases on both limbs, reduced stride width on the paretic limb, increased stance COP distances, and made single support COP distances more similar between the paretic and non-paretic limb. This suggests that all G-Exos systems contributed to improving body weight bearing on the paretic limb and symmetry in the gait cycle.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Tornozelo , Projetos Piloto , Fenômenos Biomecânicos , Extremidade Inferior , Marcha , Caminhada , Acidente Vascular Cerebral/complicações
2.
Front Neurorobot ; 16: 1098880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531920

RESUMO

[This corrects the article DOI: 10.3389/fnbot.2022.939241.].

3.
Front Neurorobot ; 16: 939241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439287

RESUMO

Stroke is the second leading cause of death and one of the leading causes of disability in the world. According to the World Health Organization, 11 million people suffer a stroke yearly. The cost of the disease is exorbitant, and the most widely used treatment is conventional physiotherapy. Therefore, assistive technology emerges to optimize rehabilitation and functional capabilities, but cost, robustness, usability, and long-term results still restrict the technology selection. This work aimed to develop a low-cost ankle orthosis, the G-Exos, a wearable exoskeleton to increase motor capability by assisting dorsiflexion, plantarflexion, and ankle stability. A hybrid system provided near-natural gait movements using active, motor, and passive assistance, elastic band. The system was validated with 10 volunteers with foot drop: seven with stroke, two with incomplete spinal cord injury (SCI), and one with acute inflammatory transverse myelitis (ATM). The G-Exos showed assistive functionality for gait movement. A Friedman test showed a significant difference in dorsiflexion amplitude with the use of the G-Exos compared to gait without the use of the G-Exos [x 2 (3) = 98.56, p < 0.001]. In addition, there was also a significant difference in ankle eversion and inversion comparing walking with and without the G-Exos [x 2 (3) = 36.12, p < 0.001]. The G-Exos is a robust, lightweight, and flexible assistive technology device to detect the gait phase accurately and provide better human-machine interaction. G-Exos training improved capability to deal with gait disorders, usability, and motor and functional recovery. Wearable assistive technologies lead to a better quality of life and contribute using in activities of daily living.

4.
Sensors (Basel) ; 23(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616886

RESUMO

Neuroscience behavioral studies stand out among the research works in this area. In these studies, normally, rodents are put inside closed platforms known as behavioral boxes in order to perform tasks and have their behaviors observed by way of sensors and annotations by hand. In this work, we aim to improve this research process by developing new techniques based upon the full automation of the behavioral box processes for more easily acquiring data. We come up with a new structural design using cutting-edge technology, with enhanced spaces and better materials. We use components that can be easily purchased (or built) and developed new techniques for control and data acquisition. Our new platform allows for more precise control of the opening of the discrimination bars, which was not satisfactorily done with previous platforms. This makes possible the design of more complex decision-making experiments using camera and sensor systems, allowing a better assessment of rodent performance in the discrimination task. All the necessary materials and development documents are made available in a collaborative multi-user platform allowing work replication. With this, the present study provides a low-cost tool with ease of development and construction that can be used by laboratories that work with this type of research.


Assuntos
Roedores , Tato , Animais , Mãos
5.
Behav Res Methods ; 50(2): 816-825, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28488135

RESUMO

Operant-conditioning boxes are widely used in animal training, allowing researchers to shape specific behaviors through reinforcements and/or punishments. Commercially available devices are expensive and run with proprietary software and hardware, hampering adaptations for the specific needs of an experiment. Therefore, many low-cost and open-source devices have recently been developed, but there are still few options for studying auditory behaviors. To overcome this problem, we developed a device based on a computer and an Arduino Mega 2560 board, named OBAT (Operant Box for Auditory Tasks), designed to present two different auditory stimuli to small primates. It has three modules: sound delivery, response bars, and reward system. We estimate that OBAT is at least 4-10 times cheaper than commercially available operant-conditioning boxes. Data from a behavioral pilot test ensured that the device can be used to train a marmoset in an auditory discrimination task. In addition, despite its low cost, accuracy tests showed that the OBAT operates with a high temporal precision. All schematics and software source code are available so that other groups can easily replicate the experiment or adapt the device to their own needs.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Comportamento Animal/fisiologia , Pesquisa Comportamental/instrumentação , Condicionamento Operante , MP3-Player , Estimulação Acústica/instrumentação , Animais , Callithrix , Discriminação Psicológica , Recompensa , Software
6.
Biomed Res Int ; 2017: 3591914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018811

RESUMO

Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Face/fisiologia , Criança , Pré-Escolar , Eletroencefalografia/métodos , Feminino , Humanos , Idioma , Masculino , Testes Neuropsicológicos
7.
PLoS One ; 10(10): e0140161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495971

RESUMO

BACKGROUND: Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. METHODS: Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. RESULTS: Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). CONCLUSIONS: Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.


Assuntos
Braço/fisiopatologia , Antebraço/fisiopatologia , Músculo Esquelético/fisiopatologia , Paresia/reabilitação , Modalidades de Fisioterapia , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Interfaces Cérebro-Computador , Doença Crônica , Eletromiografia , Feminino , Antebraço/inervação , Mãos/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Músculo Esquelético/inervação , Paresia/fisiopatologia , Ombro/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA