Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Physiol ; 602(8): 1637-1654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625711

RESUMO

The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.


Assuntos
Lisossomos , Organelas , Potenciais da Membrana , Organelas/metabolismo , Lisossomos/metabolismo , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo
2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674160

RESUMO

Slc4a genes encode various types of transporters, including Na+-HCO3- cotransporters, Cl-/HCO3- exchangers, or Na+-driven Cl-/HCO3- exchangers. Previous research has revealed that Slc4a9 (Ae4) functions as a Cl-/HCO3- exchanger, which can be driven by either Na+ or K+, prompting investigation into whether other Slc4a members facilitate cation-dependent anion transport. In the present study, we show that either Na+ or K+ drive Cl-/HCO3- exchanger activity in cells overexpressing Slc4a8 or Slc4a10. Further characterization of cation-driven Cl-/HCO3- exchange demonstrated that Slc4a8 and Slc4a10 also mediate Cl- and HCO3--dependent K+ transport. Full-atom molecular dynamics simulation on the recently solved structure of Slc4a8 supports the coordination of K+ at the Na+ binding site in S1. Sequence analysis shows that the critical residues coordinating monovalent cations are conserved among mouse Slc4a8 and Slc4a10 proteins. Together, our results suggest that Slc4a8 and Slc4a10 might transport K+ in the same direction as HCO3- ions in a similar fashion to that described for Na+ transport in the rat Slc4a8 structure.


Assuntos
Potássio , Simportadores de Sódio-Bicarbonato , Animais , Camundongos , Bicarbonatos/metabolismo , Sítios de Ligação , Antiportadores de Cloreto-Bicarbonato/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Cloretos/metabolismo , Transporte de Íons , Simulação de Dinâmica Molecular , Potássio/metabolismo , Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores de Sódio-Bicarbonato/genética
3.
Anesth Analg ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236765

RESUMO

BACKGROUND: The trigeminal ganglion (TG) collects afferent sensory information from various tissues. Recent large-scale RNA sequencing of neurons of the TG and dorsal root ganglion has revealed a variety of functionally distinct neuronal subpopulations, but organ-specific information is lacking. METHODS: To link transcriptomic and tissue-specific information, we labeled small-diameter neurons of 3 specific subpopulations of the TG by local application of lipophilic carbocyanine dyes to their innervation site in the dental pulp, cornea, and meninges (dura mater). We then collected mRNA-sequencing data from fluorescent neurons. Differentially expressed genes (DEGs) were analyzed and subjected to downstream gene set enrichment analysis (GSEA), and ion channel profiling was performed. RESULTS: A total of 10,903 genes were mapped to the mouse genome (>500 reads). DEG analysis revealed 18 and 81 genes with differential expression (log2 fold change > 2, Padj < .05) in primary afferent neurons innervating the dental pulp (dental primary afferent neurons [DPAN]) compared to those innervating the meninges (meningeal primary afferent neurons [MPAN]) and the cornea (corneal primary afferent neurons [CPAN]). We found 250 and 292 genes differentially expressed in MPAN as compared to DPAN and to CPAN, and 21 and 12 in CPAN as compared to DPAN and MPAN. Scn2b had the highest log2 fold change when comparing DPAN versus MPAN and Mmp12 was the most prominent DEG when comparing DPAN versus CPAN and, CPAN versus MPAN. GSEA revealed genes of the immune and mitochondrial oxidative phosphorylation system for the DPAN versus MPAN comparison, cilium- and ribosome-related genes for the CPAN versus DPAN comparison, and respirasome, immune cell- and ribosome-related gene sets for the CPAN versus MPAN comparison. DEG analysis for ion channels revealed no significant differences between the neurons set except for the sodium voltage-gated channel beta subunit 2, Scn2b. However, in each tissue a few ion channels turned up with robust number of reads. In DPAN, these were Cacna1b, Trpv2, Cnga4, Hcn1, and Hcn3, in CPAN Trpa1, Trpv1, Cacna1a, and Kcnk13 and in MPAN Trpv2 and Scn11a. CONCLUSIONS: Our study uncovers previously unknown differences in gene expression between sensory neuron subpopulations from the dental pulp, cornea, and dura mater and provides the basis for functional studies, including the investigation of ion channel function and their suitability as targets for tissue-specific analgesia.

5.
Trends Neurosci ; 46(10): 781-782, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652839

RESUMO

In a recent study, Hori and colleagues demonstrated that two specific residues located in the first ankyrin repeat of TRPV1 channels modulate the threshold for temperature activation. This study highlights the importance of considering natural diversity and comparative biology when approaching biophysical questions.


Assuntos
Temperatura Alta , Vertebrados , Humanos , Animais
6.
ACS Omega ; 8(13): 11736-11749, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033853

RESUMO

Transient receptor potential (TRP) channels constitute a large group of membrane receptors associated with sensory pathways in vertebrates. One of the most studied is TRPV1, a polymodal receptor tuned for detecting heat and pungent compounds. Specific inhibition of the nociceptive transduction at the peripheral nerve represents a convenient approach to pain relief. While acting as a chemoreceptor, TRPV1 shows high sensitivity and selectivity for capsaicin. In contrast to the drugs available on the market that target the inflammatory system, TRPV1 antagonists act as negative modulators of nociceptive transduction. Therefore, the development of compounds modulating TRPV1 activity has expanded dramatically over time. Experimental data suggest that most agonist and antagonist drugs interact at or near capsaicin's binding site. In particular, the properties of capsaicin's head play an essential role in modulating potency and affinity. Here, we explored a cost-efficient pipeline to predict the effects of introducing chemical modifications into capsaicin's head region. An extensive set of molecules was selected by first considering the geometrical properties of capsaicin's binding site and then molecular docking. Finally, the novel ligands were ranked by combining molecular and pharmacokinetic predictions.

7.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901904

RESUMO

TRPV5 and TRPV6 are calcium-selective ion channels expressed at the apical membrane of epithelial cells. Important for systemic calcium (Ca2+) homeostasis, these channels are considered gatekeepers of this cation transcellular transport. Intracellular Ca2+ exerts a negative control over the activity of these channels by promoting inactivation. TRPV5 and TRPV6 inactivation has been divided into fast and slow phases based on their kinetics. While slow inactivation is common to both channels, fast inactivation is characteristic of TRPV6. It has been proposed that the fast phase depends on Ca2+ binding and that the slow phase depends on the binding of the Ca2+/Calmodulin complex to the internal gate of the channels. Here, by means of structural analyses, site-directed mutagenesis, electrophysiology, and molecular dynamic simulations, we identified a specific set of amino acids and interactions that determine the inactivation kinetics of mammalian TRPV5 and TRPV6 channels. We propose that the association between the intracellular helix-loop-helix (HLH) domain and the TRP domain helix (TDh) favors the faster inactivation kinetics observed in mammalian TRPV6 channels.


Assuntos
Cálcio , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células Epiteliais/metabolismo , Sequências Hélice-Alça-Hélice , Mamíferos/metabolismo , Canais de Cátion TRPV/metabolismo , Humanos
8.
Elife ; 122023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695574

RESUMO

The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as viroporins. Here, we show that neither SARS-CoV-2 nor SARS-CoV-1 Orf3a form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a positively charged aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a's ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Endossomos/metabolismo , Canais Iônicos/metabolismo
9.
bioRxiv ; 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36263072

RESUMO

The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as a viroporin. Here we show that neither SARS-CoV-2 nor SARS-CoV-1 form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a basic aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.

10.
Cell ; 185(18): 3390-3407.e18, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055200

RESUMO

Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.


Assuntos
Axônios/fisiologia , Cromatina/química , Cílios , Sinapses , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cílios/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Serotonina/metabolismo , Transdução de Sinais , Sinapses/fisiologia
11.
Elife ; 112022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35686986

RESUMO

Transient receptor potential (TRP) proteins are a large family of cation-selective channels, surpassed in variety only by voltage-gated potassium channels. Detailed molecular mechanisms governing how membrane voltage, ligand binding, or temperature can induce conformational changes promoting the open state in TRP channels are still a matter of debate. Aiming to unveil distinctive structural features common to the transmembrane domains within the TRP family, we performed phylogenetic reconstruction, sequence statistics, and structural analysis over a large set of TRP channel genes. Here, we report an exceptionally conserved set of residues. This fingerprint is composed of twelve residues localized at equivalent three-dimensional positions in TRP channels from the different subtypes. Moreover, these amino acids are arranged in three groups, connected by a set of aromatics located at the core of the transmembrane structure. We hypothesize that differences in the connectivity between these different groups of residues harbor the apparent differences in coupling strategies used by TRP subgroups.


Assuntos
Canais de Potencial de Receptor Transitório , Filogenia , Domínios Proteicos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
12.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G628-G638, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585968

RESUMO

Ae4 transporters are critical for Cl- uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl-/HCO3- exchanger activity in SMG acinar cells from Ae2-/- mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to ß-adrenergic receptor stimulation. Moreover, pretreatment with H89, an inhibitor of the cAMP-activated kinase (PKA), prevented the stimulation of Ae4 exchangers. We then expressed Ae4 in CHO-K1 cells and found that the Ae4-mediated activity was increased when Ae4 is coexpressed with the catalytic subunit of PKA (PKAc), which is constitutively active. Ae4 sequence analysis showed two potential PKA phosphorylation serine residues located at the intracellular NH2-terminal domain according to a homology model of Ae4. NH2-terminal domain Ser residues were mutated to alanine (S173A and S273A, respectively), where the Cl-/HCO3- exchanger activity displayed by the mutant S173A was not activated by PKA. Conversely, S273A mutant kept the PKA dependency. Together, we conclude that Ae4 is stimulated by PKA in SMG acinar cells by a mechanism that probably depends on the phosphorylation of S173.NEW & NOTEWORTHY We found that Ae4 exchanger activity in secretory salivary gland acinar cells is increased upon ß-adrenergic receptor stimulation. The activation of Ae4 was prevented by H89, a nonselective PKA inhibitor. Protein sequence analysis revealed two residues (S173 and S273) that are potential targets of cAMP-dependent protein kinase (PKA). Experiments in CHO-K1 cells expressing S173A and S273A mutants showed that S173A, but not S273A, is not activated by PKA.


Assuntos
Células Acinares/enzimologia , Antiportadores de Cloreto-Bicarbonato/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Glândulas Salivares/enzimologia , Animais , Células CHO , Antiportadores de Cloreto-Bicarbonato/química , Antiportadores de Cloreto-Bicarbonato/genética , Cricetulus , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Glândulas Salivares/citologia , Relação Estrutura-Atividade
13.
Methods Enzymol ; 653: 239-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34099174

RESUMO

Monitoring the conformational changes of proteins is critical to understand their function. Ion channels are membrane-bound minute machines controlling the passage of ions across biological membranes. The precise labeling of ion channels with fluorescent probes allows studying their dynamics and facilitates their characterization by high-resolution optical techniques. Here we describe a protocol for the use of a small fluorescent reporter, incorporated by expansion of the genetic code in the host cell. An important advantage of using small probes is that they are less likely to perturb protein structure, function, and trafficking. In our hands, Tyr-coumarin proved to be useful to measure the conformational changes occurring in the narrow space of the permeation pathway in single capsaicin receptors. The method described here could be directly translated to the study of membrane receptors, non-electrogenic transporters, or membrane-bound enzymes.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Cumarínicos , Código Genético , Canais Iônicos/genética , Conformação Molecular
14.
Commun Biol ; 4(1): 389, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758369

RESUMO

Eukaryotic cells are complex systems compartmentalized in membrane-bound organelles. Visualization of organellar electrical activity in living cells requires both a suitable reporter and non-invasive imaging at high spatiotemporal resolution. Here we present hVoSorg, an optical method to monitor changes in the membrane potential of subcellular membranes. This method takes advantage of a FRET pair consisting of a membrane-bound voltage-insensitive fluorescent donor and a non-fluorescent voltage-dependent acceptor that rapidly moves across the membrane in response to changes in polarity. Compared to the currently available techniques, hVoSorg has advantages including simple and precise subcellular targeting, the ability to record from individual organelles, and the potential for optical multiplexing of organellar activity.


Assuntos
Técnicas Biossensoriais , Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Potenciais da Membrana , Microscopia de Fluorescência , Imagem Óptica , Animais , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência , Genes Reporter , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Células MCF-7 , Optogenética , Células PC12 , Ratos
15.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771873

RESUMO

Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.

16.
Heliyon ; 6(10): e05140, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33083608

RESUMO

The incorporation of non-canonical amino acids into proteins has emerged as a promising strategy to manipulate and study protein structure-function relationships with superior precision in vitro and in vivo. To date, fluorescent non-canonical amino acids (f-ncAA) have been successfully incorporated in proteins expressed in bacterial systems, Xenopus oocytes, and HEK-293T cells. Here, we describe the rational generation of a novel orthogonal aminoacyl-tRNA synthetase based on the E. coli tyrosine synthetase that is capable of encoding the f-ncAA tyr-coumarin in HEK-293T cells.

17.
Cell Calcium ; 91: 102278, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858446

RESUMO

Novel structures of the human TRPA1 channel were determined in the presence of the agonist iodoacetamide and the antagonist A-967079, to reveal the open and closed states of the channel, respectively. The structures further revealed the location of Ca2+ modulatory site that is likely conserved among several TRP subgroups.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico , Canal de Cátion TRPA1/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Canal de Cátion TRPA1/química
18.
Sci Rep ; 10(1): 8684, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457384

RESUMO

Essential for calcium homeostasis, TRPV5 and TRPV6 are calcium-selective channels belonging to the transient receptor potential (TRP) gene family. In this study, we investigated the evolutionary history of these channels to add an evolutionary context to the already available physiological information. Phylogenetic analyses revealed that paralogs found in mammals, sauropsids, amphibians, and chondrichthyes, are the product of independent duplication events in the ancestor of each group. Within amniotes, we identified a traceable signature of three amino acids located at the amino-terminal intracellular region. The signature correlates with both the duplication events and the phenotype of fast inactivation observed in mammalian TRPV6 channels. Electrophysiological recordings and mutagenesis revealed that the signature sequence modulates the phenotype of fast inactivation in all clades of vertebrates but reptiles. A transcriptome analysis showed a change in tissue expression from gills, in marine vertebrates, to kidneys in terrestrial vertebrates. Our results highlight a cytoplasmatic structural triad composed by the Helix-Loop-Helix domain, the S2-S3 linker, and the TRP domain helix that is important on modulating the activity of calcium-selective TRPV channels.


Assuntos
Cálcio/metabolismo , Evolução Molecular , Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Anfíbios/metabolismo , Animais , Aves/metabolismo , Brânquias/metabolismo , Células HEK293 , Sequências Hélice-Alça-Hélice , Humanos , Rim/metabolismo , Mamíferos/metabolismo , Mutagênese Sítio-Dirigida , Filogenia , Alinhamento de Sequência , Canais de Cátion TRPV/química , Canais de Cátion TRPV/classificação , Canais de Cátion TRPV/genética
19.
J Gen Physiol ; 152(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978216

RESUMO

Small-molecule fluorescent wheat germ agglutinin (WGA) conjugates are routinely used to demarcate mammalian plasma membranes, because they bind to the cell's glycocalyx. Here, we describe the derivatization of WGA with a pH-sensitive rhodamine fluorophore (pHRho; pKa = 7) to detect proton channel fluxes and extracellular proton accumulation and depletion from primary cells. We found that WGA-pHRho labeling was uniform and did not appreciably alter the voltage gating of glycosylated ion channels, and the extracellular changes in pH correlated with proton channel activity. Using single-plane illumination techniques, WGA-pHRho was used to detect spatiotemporal differences in proton accumulation and depletion over the extracellular surface of cardiomyocytes, astrocytes, and neurons. Because WGA can be derivatized with any small-molecule fluorescent ion sensor, WGA conjugates should prove useful to visualize most electrogenic and nonelectrogenic events on the extracellular side of the plasma membrane.


Assuntos
Membrana Celular/química , Prótons , Aglutininas do Germe de Trigo/química , Animais , Glicosilação , Concentração de Íons de Hidrogênio
20.
Int J Biochem Cell Biol ; 112: 18-23, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31026506

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is a polymodal cation channel activated by heat, voltage, and ligands. Also known as the capsaicin receptor, TRPV1 is expressed in numerous tissues by different cell types, including peripheral sensory fibers where acts as a thermal and chemical detector in nociceptive pathways. TRPV1 channels are able to bind a wide range of ligands, including a number of vanilloid derivatives all modulating channel's activity. When expressed by sensory neurons, activation of TRPV1 channels by heat (>40 °C), capsaicin (sub-micromolar), or acid environment (pH < 6), causes depolarization leading to burning pain sensation in mammals. Naturally occurring chalcones (1,3-diaryl-2-propen-1-ones) have been reported as effective inhibitors of TRPV1. Their relatively simple chemical structure and the possibility for handy chemical modification make them attractive ligands for the treatment of peripheral pain. By taking advantage of the structural information available, here we discuss pharmacological properties of chalcones and their putative mechanism of binding to TRPV1 channels.


Assuntos
Chalcona , Dor , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Chalcona/química , Chalcona/farmacocinética , Chalcona/uso terapêutico , Humanos , Dor/tratamento farmacológico , Dor/metabolismo , Dor/patologia , Células Receptoras Sensoriais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA