Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Prev Alzheimers Dis ; 11(3): 567-581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706273

RESUMO

BACKGROUND: The primary criteria for diagnosing mild cognitive impairment (MCI) due to Alzheimer's Disease (AD) or probable mild AD dementia rely partly on cognitive assessments and the presence of amyloid plaques. Although these criteria exhibit high sensitivity in predicting AD among cognitively impaired patients, their specificity remains limited. Notably, up to 25% of non-demented patients with amyloid plaques may be misdiagnosed with MCI due to AD, when in fact they suffer from a different brain disorder. The introduction of anti-amyloid antibodies complicates this scenario. Physicians must prioritize which amyloid-positive MCI patients receive these treatments, as not all are suitable candidates. Specifically, those with non-AD amyloid pathologies are not primary targets for amyloid-modifying therapies. Consequently, there is an escalating medical necessity for highly specific blood biomarkers that can accurately detect pre-dementia AD, thus optimizing amyloid antibody prescription. OBJECTIVES: The objective of this study was to evaluate a predictive model based on peripheral biomarkers to identify MCI and mild dementia patients who will develop AD dementia symptoms in cognitively impaired population with high specificity. DESIGN: Peripheral biomarkers were identified in a gene transfer-based animal model of AD and then validated during a retrospective multi-center clinical study. SETTING: Participants from 7 retrospective cohorts (US, EU and Australia). PARTICIPANTS: This study followed 345 cognitively impaired individuals over up to 13 years, including 193 with MCI and 152 with mild dementia, starting from their initial visits. The final diagnoses, established during their last assessments, classified 249 participants as AD patients and 96 as having non-AD brain disorders, based on the specific diagnostic criteria for each disorder subtype. Amyloid status, assessed at baseline, was available for 82.9% of the participants, with 61.9% testing positive for amyloid. Both amyloid-positive and negative individuals were represented in each clinical group. Some of the AD patients had co-morbidities such as metabolic disorders, chronic diseases, or cardiovascular pathologies. MEASUREMENTS: We developed targeted mass spectrometry assays for 81 blood-based biomarkers, encompassing 45 proteins and 36 metabolites previously identified in AAV-AD rats. METHODS: We analyzed blood samples from study participants for the 81 biomarkers. The B-HEALED test, a machine learning-based diagnostic tool, was developed to differentiate AD patients, including 123 with Prodromal AD and 126 with mild AD dementia, from 96 individuals with non-AD brain disorders. The model was trained using 70% of the data, selecting relevant biomarkers, calibrating the algorithm, and establishing cutoff values. The remaining 30% served as an external test dataset for blind validation of the predictive accuracy. RESULTS: Integrating a combination of 19 blood biomarkers and participant age, the B-HEALED model successfully distinguished participants that will develop AD dementia symptoms (82 with Prodromal AD and 83 with AD dementia) from non-AD subjects (71 individuals) with a specificity of 93.0% and sensitivity of 65.4% (AUROC=81.9%, p<0.001) during internal validation. When the amyloid status (derived from CSF or PET scans) and the B-HEALED model were applied in association, with individuals being categorized as AD if they tested positive in both tests, we achieved 100% specificity and 52.8% sensitivity. This performance was consistent in blind external validation, underscoring the model's reliability on independent datasets. CONCLUSIONS: The B-HEALED test, utilizing multiomics blood-based biomarkers, demonstrates high predictive specificity in identifying AD patients within the cognitively impaired population, minimizing false positives. When used alongside amyloid screening, it effectively identifies a nearly pure prodromal AD cohort. These results bear significant implications for refining clinical trial inclusion criteria, facilitating drug development and validation, and accurately identifying patients who will benefit the most from disease-modifying AD treatments.


Assuntos
Doença de Alzheimer , Biomarcadores , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Biomarcadores/sangue , Humanos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/sangue , Masculino , Feminino , Idoso , Estudos Retrospectivos , Sensibilidade e Especificidade , Animais , Estudos de Coortes , Sintomas Prodrômicos , Multiômica
2.
J Prev Alzheimers Dis ; 9(3): 480-490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35841249

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a continuum of events beginning with an increase in brain soluble Aß42 followed by the appearance of hyperphosphorylated tau (P-tau, asymptomatic stage). Mild Cognitive Impairment (MCI) then appears (prodromal stage). However, the individual contribution of these two soluble proteins in the onset of the first cognitive symptoms remains unclear. OBJECTIVES: We sought to understand the specific impact of p-tau on the development of MCI in the AAV-AD rat model, a model of late-onset Alzheimer's disease (LOAD) predementia. METHODS: We specifically reduced the phosphorylation level of tau while leaving Aß42 levels unchanged using a DYRK1A protein kinase inhibitor, Leucettine L41, in an adeno-associated virus-based Alzheimer's disease (AAV-AD) rat model. Leucettine L41 was administered by intraperitoneal injection at 20 mg/kg per day in AAV-AD rats from 9 (late asymptomatic phase) to 10 (prodromal phase) months of age. RESULTS: Decreased soluble forms of P-tau induced by chronic administration of Leucettine L41 did not change soluble Aß42 levels but prevented MCI onset in 10-month-old AAV-AD rats. CONCLUSIONS: The present study argues that P-tau is required to induce the development of MCI. Consistent with our previous findings that soluble Aß42 is also required for MCI onset, the data obtained in the AAV-AD rat model confirm that the transition from the asymptomatic to the prodromal stage may be caused by the combined presence of both soluble brain forms of Aß42 and p-tau, suggesting that the development of MCI may be the consequence of their synergistic action.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Animais , Disfunção Cognitiva/psicologia , Humanos , Fragmentos de Peptídeos , Sintomas Prodrômicos , Ratos , Proteínas tau/metabolismo
3.
J Prev Alzheimers Dis ; 9(2): 338-347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35543008

RESUMO

BACKGROUND: Though our understanding of Alzheimer's disease (AD) remains elusive, it is well known that the disease starts long before the first signs of dementia. This is supported by the large number of symptomatic drug failures in clinical trials and the increased trend to enroll patients at predementia stages with either mild or no cognitive symptoms. However, the design of pre-clinical studies does not follow this attitude, in particular regarding the choice of animal models, often irrelevant to mimic predementia Late Onset Alzheimer's Disease (LOAD). OBJECTIVES: We aimed to pharmacologically validate the AAV-AD rat model to evaluate preventive treatment of AD. METHODS: We evaluated an N-methyl-D-aspartate receptor antagonist, named memantine, in AAV-AD rats, an age-dependent amyloid rat model which closely mimics Alzheimer's pathology including asymptomatic and prodromal stages. Memantine was used at a clinically relevant dose (20 mg daily oral administration) from 4 (asymptomatic phase) to 10 (mild cognitive impairment phase) months of age. RESULTS: A 6-month treatment with memantine promoted a non-amyloidogenic cleavage of APP followed by a decrease in soluble Aß42. Consequently, both long-term potentiation and cognitive impairments were prevented. By contrast, the levels of hyperphosphorylated endogenous tau remained unchanged, indicating that a long-term memantine treatment is ineffective to restrain the APP processing-induced tauopathy. CONCLUSIONS: Together, our data confirm that relevant models to LOAD, such as the AAV-AD rat, can provide a framework for a better understanding of the disease and accurate assessment of preventive treatments.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Humanos , Memantina/uso terapêutico , Ratos
4.
Adv Pharmacol Sci ; 2011: 153218, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028705

RESUMO

Decrease of GABAergic transmission has been proposed to improve memory functions. Indeed, inverse agonists selective for α5 GABA-A-benzodiazepine receptors (α5IA) have promnesiant activity. Interestingly, we have recently shown that α5IA can rescue cognitive deficits in Ts65Dn mice, a Down syndrome mouse model with altered GABAergic transmission. Here, we studied the impact of chronic treatment with α5IA on gene expression in the hippocampus of Ts65Dn and control euploid mice after being trained in the Morris water maze task. In euploid mice, chronic treatment with α5IA increased IEGs expression, particularly of c-Fos and Arc genes. In Ts65Dn mice, deficits of IEGs activation were completely rescued after treatment with α5IA. In addition, normalization of Sod1 overexpression in Ts65Dn mice after α5IA treatment was observed. IEG expression regulation after α5IA treatment following behavioral stimulation could be a contributing factor for both the general promnesiant activity of α5IA and its rescuing effect in Ts65Dn mice alongside signaling cascades that are critical for memory consolidation and cognition.

5.
J Psychopharmacol ; 25(8): 1030-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21693554

RESUMO

An imbalance between inhibitory and excitatory neurotransmission has been proposed to contribute to altered brain function in individuals with Down syndrome (DS). Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system and accordingly treatment with GABA-A antagonists can efficiently restore cognitive functions of Ts65Dn mice, a genetic model for DS. However, GABA-A antagonists are also convulsant which preclude their use for therapeutic intervention in DS individuals. Here, we have evaluated safer strategies to release GABAergic inhibition using a GABA-A-benzodiazepine receptor inverse agonist selective for the α5-subtype (α5IA). We demonstrate that α5IA restores learning and memory functions of Ts65Dn mice in the novel-object recognition and in the Morris water maze tasks. Furthermore, we show that following behavioural stimulation, α5IA enhances learning-evoked immediate early gene products in specific brain regions involved in cognition. Importantly, acute and chronic treatments with α5IA do not induce any convulsant or anxiogenic effects that are associated with GABA-A antagonists or non-selective inverse agonists of the GABA-A-benzodiazepine receptors. Finally, chronic treatment with α5IA did not induce histological alterations in the brain, liver and kidney of mice. Our results suggest that non-convulsant α5-selective GABA-A inverse agonists could improve learning and memory deficits in DS individuals.


Assuntos
Síndrome de Down/tratamento farmacológico , Agonistas de Receptores de GABA-A/farmacologia , Ftalazinas/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Triazóis/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Síndrome de Down/fisiopatologia , Sistemas de Liberação de Medicamentos , Agonismo Inverso de Drogas , Agonistas de Receptores de GABA-A/administração & dosagem , Agonistas de Receptores de GABA-A/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Ftalazinas/administração & dosagem , Ftalazinas/toxicidade , Receptores de GABA-A/metabolismo , Triazóis/administração & dosagem , Triazóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA