Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geohealth ; 7(1): e2022GH000713, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618583

RESUMO

Exposure to air pollution is a leading risk factor for premature death globally; however, the complexity of its formation and the diversity of its sources can make it difficult to address. The Group of Twenty (G20) countries are a collection of the world's largest and most influential economies and are uniquely poised to take action to reduce the global health burden associated with air pollution. We present a framework capable of simultaneously identifying regional and sectoral sources of the health impacts associated with two air pollutants, fine particulate matter (PM2.5) and ozone (O3) in G20 countries; this framework is also used to assess the health impacts associated with emission reductions. This approach combines GEOS-Chem adjoint sensitivities, satellite-derived data, and a new framework designed to better characterize the non-linear relationship between O3 exposures and nitrogen oxides emissions. From this approach, we estimate that a 50% reduction of land transportation emissions by 2040 would result in 251 thousand premature deaths avoided in G20 countries. These premature deaths would be attributable equally to reductions in PM2.5 and O3 exposure which make up 51% and 49% of the potential benefits, respectively. In our second application, we estimate that the energy generation related co-benefits associated with G20 countries staying on pace with their net-zero carbon dioxide targets would be 290 thousand premature deaths avoided in 2040; action by India (47%) would result in the most benefits of any country and a majority of these avoided deaths would be attributable to reductions in PM2.5 exposure (68%).

2.
PLoS One ; 14(4): e0215013, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30990836

RESUMO

In the 2015 Paris Agreement, nations worldwide pledged emissions reductions (Nationally Determined Contributions-NDCs) to avert the threat of climate change, and agreed to periodically review these pledges to strengthen their level of ambition. Previous studies have analyzed NDCs largely in terms of their implied contribution to limit global warming, their implications on the energy sector or on mitigation costs. Nevertheless, a gap in the literature exists regarding the understanding of implications of the NDCs on countries' Energy-Water-Land nexus resource systems. The present paper explores this angle within the regional context of Latin America by employing the Global Change Assessment Model, a state-of-the-art integrated assessment model capable of representing key system-wide interactions among nexus sectors and mitigation policies. By focusing on Brazil, Mexico, Argentina and Colombia, we stress potential implications on national-level water demands depending on countries' strategies to enforce energy-related emissions reductions and their interplays with the land sector. Despite the differential implications of the Paris pledges on each country, increased water demands for crop and biomass irrigation and for electricity generation stand out as potential trade-offs that may emerge under the NDC policy. Hence, this study underscores the need of considering a nexus resource planning framework (known as "Nexus Approach") in the forthcoming NDCs updating cycles as a mean to contribute toward sustainable development.


Assuntos
Política Ambiental , Aquecimento Global , Efeito Estufa , Recursos Hídricos , Argentina , Brasil , Colômbia , Gases de Efeito Estufa , América Latina , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA