Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Br J Cancer ; 129(10): 1667-1678, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37723317

RESUMO

BACKGROUND: Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. METHODS: We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. RESULTS: In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-XL inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. CONCLUSIONS: These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma.


Assuntos
Antineoplásicos , Neuroblastoma , Criança , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Cisplatino/farmacologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neuroblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose
3.
Pediatr Dev Pathol ; 26(3): 287-291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994845

RESUMO

BACKGROUND: Hirschsprung disease (HD) is an aganglionosis of variable length starting at the rectosigmoid colon with surgery as sole therapeutic option. The length of the resected bowel segment is a crucial information for the treating surgeons and influences the prognosis of the patient. It is often artificially altered due to post operative tissue shrinkage. The objective of this study is to quantify the extent tissue shrinkage of HD specimens. MATERIAL AND METHODS: Colorectal HD specimens were measured at the time of surgery and at the time of cut-up, either fresh or after formalin fixation and statistically analyzed. RESULTS: Sixteen colorectal specimens were included. Following formalin fixation the specimen length decreased by 22.7% (P < .001). Without formalin fixation the specimens shrank by an average of 24.9% (P = .05). There was no significant difference in the extent of tissue shrinkage with or without formalin fixation (P = .76). CONCLUSION: This study showed that there is significant tissue shrinkage in HD specimens. The 2 different cohorts revealed that tissue shrinkage is mostly caused by tissue retraction/alteration after organ removal but also to a lesser extent by fixation with formalin. Surgeons and (neuro-)pathologists should be aware of the sizeable shrinking artifact to avoid unnecessary confusion.


Assuntos
Neoplasias Colorretais , Doença de Hirschsprung , Cirurgiões , Criança , Humanos , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/cirurgia , Doença de Hirschsprung/patologia , Reto/patologia , Formaldeído , Neoplasias Colorretais/patologia
4.
Front Pediatr ; 10: 852185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911825

RESUMO

Significant progress has been made in the management of Wilms tumor (WT) in recent years, mostly as a result of collaborative efforts and the implementation of protocol-driven, multimodal therapy. This article offers a comprehensive overview of current multidisciplinary treatment strategies for WT, whilst also addressing recent technical innovations including nephron-sparing surgery (NSS) and minimally invasive approaches. In addition, surgical concepts for the treatment of metastatic disease, advances in tumor imaging technology and potentially prognostic biomarkers will be discussed. Current evidence suggests that, in experienced hands and selected cases, laparoscopic radical nephrectomy and laparoscopic-assisted partial nephrectomy for WT may offer the same outcome as the traditional open approach. While NSS is the standard procedure for bilateral WT, NSS has evolved as an alternative technique in patients with smaller unilateral WT and in cases with imminent renal failure. Metastatic disease of the lung or liver that is associated with WT is preferably treated with a three-drug chemotherapy and local radiation therapy. However, surgical sampling of lung nodules may be advisable in persistent nodules before whole lung irradiation is commenced. Several tumor markers such as loss of heterozygosity of chromosomes 1p/16q, 11p15 and gain of function at 1q are associated with an increased risk of recurrence or a decreased risk of overall survival in patients with WT. In summary, complete resection with tumor-free margins remains the primary surgical aim in WT, while NSS and minimally invasive approaches are only suitable in a subset of patients with smaller WT and low-risk disease. In the future, advances in tumor imaging technology may assist the surgeon in defining surgical resection margins and additional biomarkers may emerge as targets for development of new diagnostic tests and potential therapies.

5.
Neuropathol Appl Neurobiol ; 47(3): 379-393, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33080075

RESUMO

AIMS: Changes in metabolism are known to contribute to tumour phenotypes. If and how metabolic alterations in brain tumours contribute to patient outcome is still poorly understood. Epigenetics impact metabolism and mitochondrial function. The aim of this study is a characterisation of metabolic features in molecular subgroups of isocitrate dehydrogenase mutant (IDHmut) and isocitrate dehydrogenase wildtype (IDHwt) gliomas. METHODS: We employed DNA methylation pattern analyses with a special focus on metabolic genes, large-scale metabolism panel immunohistochemistry (IHC), qPCR-based determination of mitochondrial DNA copy number and immune cell content using IHC and deconvolution of DNA methylation data. We analysed molecularly characterised gliomas (n = 57) for in depth DNA methylation, a cohort of primary and recurrent gliomas (n = 22) for mitochondrial copy number and validated these results in a large glioma cohort (n = 293). Finally, we investigated the potential of metabolic markers in Bevacizumab (Bev)-treated gliomas (n = 29). RESULTS: DNA methylation patterns of metabolic genes successfully distinguished the molecular subtypes of IDHmut and IDHwt gliomas. Promoter methylation of lactate dehydrogenase A negatively correlated with protein expression and was associated with IDHmut gliomas. Mitochondrial DNA copy number was increased in IDHmut tumours and did not change in recurrent tumours. Hierarchical clustering based on metabolism panel IHC revealed distinct subclasses of IDHmut and IDHwt gliomas with an impact on patient outcome. Further quantification of these markers allowed for the prediction of survival under anti-angiogenic therapy. CONCLUSION: A mitochondrial signature was associated with increased survival in all analyses, which could indicate tumour subgroups with specific metabolic vulnerabilities.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metilação de DNA/fisiologia , Glioma/genética , Glioma/metabolismo , Isocitrato Desidrogenase/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Fenótipo , Transcriptoma
6.
J Exp Clin Cancer Res ; 38(1): 434, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665089

RESUMO

BACKGROUND: Breast cancer (BC) is the most frequent malignant tumor in females and the 2nd most common cause of brain metastasis (BM), that are associated with a fatal prognosis. The increasing incidence from 10% up to 40% is due to more effective treatments of extracerebral sites with improved prognosis and increasing use of MRI in diagnostics. A frequently administered, potent chemotherapeutic group of drugs for BC treatment are taxanes usually used in the adjuvant and metastatic setting, which, however, have been suspected to be associated with a higher incidence of BM. The aim of our study was to experimentally analyze the impact of the taxane docetaxel (DTX) on brain metastasis formation, and to elucidate the underlying molecular mechanism. METHODS: A monocentric patient cohort was analyzed to determine the association of taxane treatment and BM formation. To identify the specific impact of DTX, a murine brain metastatic model upon intracardial injection of breast cancer cells was conducted. To approach the functional mechanism, dynamic contrast-enhanced MRI and electron microscopy of mice as well as in-vitro transendothelial electrical resistance (TEER) and tracer permeability assays using brain endothelial cells (EC) were carried out. PCR-based, immunohistochemical and immunoblotting analyses with additional RNA sequencing of murine and human ECs were performed to explore the molecular mechanisms by DTX treatment. RESULTS: Taxane treatment was associated with an increased rate of BM formation in the patient cohort and the murine metastatic model. Functional studies did not show unequivocal alterations of blood-brain barrier properties upon DTX treatment in-vivo, but in-vitro assays revealed a temporary DTX-related barrier disruption. We found disturbance of tubulin structure and upregulation of tight junction marker claudin-5 in ECs. Furthermore, upregulation of several members of the tubulin family and downregulation of tetraspanin-2 in both, murine and human ECs, was induced. CONCLUSION: In summary, a higher incidence of BM was associated with prior taxane treatment in both a patient cohort and a murine mouse model. We could identify tubulin family members and tetraspanin-2 as potential contributors for the destabilization of the blood-brain barrier. Further analyses are needed to decipher the exact role of those alterations on tumor metastatic processes in the brain.


Assuntos
Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Docetaxel/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Claudina-5/genética , Docetaxel/farmacocinética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Camundongos , Microscopia Eletrônica , Análise de Sequência de RNA , Tubulina (Proteína)/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Acta Neuropathol Commun ; 7(1): 55, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971321

RESUMO

Melanoma patients carry a high risk of developing brain metastases, and improvements in survival are still measured in weeks or months. Durable disease control within the brain is impeded by poor drug penetration across the blood-brain barrier, as well as intrinsic and acquired drug resistance. Augmented mitochondrial respiration is a key resistance mechanism in BRAF-mutant melanomas but, as we show in this study, this dependence on mitochondrial respiration may also be exploited therapeutically. We first used high-throughput pharmacogenomic profiling to identify potentially repurposable compounds against BRAF-mutant melanoma brain metastases. One of the compounds identified was ß-sitosterol, a well-tolerated and brain-penetrable phytosterol. Here we show that ß-sitosterol attenuates melanoma cell growth in vitro and also inhibits brain metastasis formation in vivo. Functional analyses indicated that the therapeutic potential of ß-sitosterol was linked to mitochondrial interference. Mechanistically, ß-sitosterol effectively reduced mitochondrial respiratory capacity, mediated by an inhibition of mitochondrial complex I. The net result of this action was increased oxidative stress that led to apoptosis. This effect was only seen in tumor cells, and not in normal cells. Large-scale analyses of human melanoma brain metastases indicated a significant role of mitochondrial complex I compared to brain metastases from other cancers. Finally, we observed completely abrogated BRAF inhibitor resistance when vemurafenib was combined with either ß-sitosterol or a functional knockdown of mitochondrial complex I. In conclusion, based on its favorable tolerability, excellent brain bioavailability, and capacity to inhibit mitochondrial respiration, ß-sitosterol represents a promising adjuvant to BRAF inhibitor therapy in patients with, or at risk for, melanoma brain metastases.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Melanoma/genética , Melanoma/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Sitosteroides/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/complicações , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Feminino , Humanos , Melanoma/complicações , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mutação , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma
9.
J Biol Chem ; 294(9): 3037-3050, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578297

RESUMO

The peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a master regulator of mitochondrial biogenesis and controls metabolism by coordinating transcriptional events. Here, we interrogated whether PGC-1α is involved in tumor growth and the metabolic flexibility of glioblastoma cells. PGC-1α was expressed in a subset of established glioma cell lines and primary glioblastoma cell cultures. Furthermore, a higher PGC-1α expression was associated with an adverse outcome in the TCGA glioblastoma dataset. Suppression of PGC-1α expression by shRNA in the PGC-1α-positive U343MG glioblastoma line suppressed mitochondrial gene expression, reduced mitochondrial membrane potential, and diminished oxygen as well as glucose consumption, and lactate production. Compatible with the known PGC-1α functions in reactive oxygen species (ROS) metabolism, glioblastoma cells deficient in PGC-1α displayed ROS accumulation, had reduced RNA levels of proteins involved in ROS detoxification, and were more susceptible to death induction by H2O2 compared with control cells. PGC-1αsh cells also had impaired proliferation and migration rates in vitro and displayed less stem cell characteristics. Complementary effects were observed in PGC-1α-low LNT-229 cells engineered to overexpress PGC-1α. In an in vivo xenograft experiment, tumors formed by U343MG PGC-1αsh glioblastoma cells grew much slower than control tumors and were less invasive. Interestingly, the PGC-1α knockdown conferred protection against hypoxia-induced cell death, probably as a result of less active anabolic pathways, and this effect was associated with reduced epidermal growth factor expression and mammalian target of rapamycin signaling. In summary, PGC-1α modifies the neoplastic phenotype of glioblastoma cells toward more aggressive behavior and therefore makes PGC-1α a potential target for anti-glioblastoma therapies.


Assuntos
Glioblastoma/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fenótipo , Linhagem Celular Tumoral , Metabolismo Energético/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Homeostase/genética , Humanos , Mitocôndrias/genética , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Hipóxia Tumoral/genética
10.
Int J Mol Sci ; 19(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772845

RESUMO

Inducible gene expression is an important tool in molecular biology research to study protein function. Most frequently, the antibiotic doxycycline is used for regulation of so-called tetracycline (Tet)-inducible systems. In contrast to stable gene overexpression, these systems allow investigation of acute and reversible effects of cellular protein induction. Recent reports have already called for caution when using Tet-inducible systems as the employed antibiotics can disturb mitochondrial function and alter cellular metabolism by interfering with mitochondrial translation. Reprogramming of energy metabolism has lately been recognized as an important emerging hallmark of cancer and is a central focus of cancer research. Therefore, the scope of this study was to systematically analyze dose-dependent metabolic effects of doxycycline on a panel of glioma cell lines with concomitant monitoring of gene expression from Tet-inducible systems. We report that doxycycline doses commonly used with inducible expression systems (0.01⁻1 µg/mL) substantially alter cellular metabolism: Mitochondrial protein synthesis was inhibited accompanied by reduced oxygen and increased glucose consumption. Furthermore, doxycycline protected human glioma cells from hypoxia-induced cell death. An impairment of cell growth was only detectable with higher doxycycline doses (10 µg/mL). Our findings describe settings where doxycycline exerts effects on eukaryotic cellular metabolism, limiting the employment of Tet-inducible systems.


Assuntos
Doxiciclina/farmacologia , Glioma/metabolismo , Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glucose/metabolismo , Humanos , Hipóxia/genética , Mitocôndrias/genética , Substâncias Protetoras/farmacologia , Inibidores da Síntese de Proteínas/farmacologia
11.
Oncotarget ; 8(40): 67567-67591, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978054

RESUMO

Carboxypeptidase E (CPE) has recently been described as a multifunctional protein that regulates proliferation, migration and survival in several tumor entities. In glioblastoma (GBM), the most malignant primary brain tumor, secreted CPE (sCPE) was shown to modulate tumor cell migration. In our current study, we aimed at clarifying the underlying molecular mechanisms regulating anti-migratory as well as novel metabolic effects of sCPE in GBM. Here we show that sCPE activates mTORC1 signaling in glioma cells detectable by phosphorylation of its downstream target RPS6. Additionally, sCPE diminishes glioma cell migration associated with a negative regulation of Rac1 signaling via RPS6, since both inhibition of mTOR and stimulation of Rac1 results in a reversed effect of sCPE on migration. Knockdown of CPE leads to a decrease of active RPS6 associated with increased GBM cell motility. Apart from this, we show that sCPE enhances glucose flux into the tricarboxylic acid cycle at the expense of lactate production, thereby decreasing aerobic glycolysis, which might as well contribute to a less invasive behavior of tumor cells. Our data contributes to a better understanding of the complexity of GBM cell migration and sheds new light on how tumor cell invasion and metabolic plasticity are interconnected.

12.
Chin Clin Oncol ; 6(Suppl 1): S2, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28595423

RESUMO

Meningiomas are the most frequent primary central nervous system (CNS) tumors. Although approximately 80% of the tumors are slow growing and benign, some subtypes are associated with a less favorable outcome. An adequate classification system aims at providing a tool for estimating recurrence and overall survival of meningioma patients. The 2016 version of the World Health Organization (WHO) classification for CNS tumors constitutes a hallmark for neuropathological tumor classification since genetic alterations and histopathology are combined for a final diagnosis. Although this mainly applies to neuroepithelial tumors in meningioma research and classification the connection of histomorphological features and genetic profiles becomes more and more evident. Here we report on advances and controversies of meningioma classification in the 2016 edition of the WHO classification of CNS tumors. Furthermore we provide an outlook how a future meningioma classification system might look like.


Assuntos
Neoplasias Meníngeas/classificação , Meningioma/classificação , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/patologia , Gradação de Tumores , Recidiva Local de Neoplasia , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA