Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(12): e3001877, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36520709

RESUMO

The yeast Komagataella phaffii (formerly called Pichia pastoris) is used widely as a host for secretion of heterologous proteins, but only a few isolates of this species exist and all the commonly used expression systems are derived from a single genetic background, CBS7435 (NRRL Y-11430). We hypothesized that other genetic backgrounds could harbor variants that affect yields of secreted proteins. We crossed CBS7435 with 2 other K. phaffii isolates and mapped quantitative trait loci (QTLs) for secretion of a heterologous protein, ß-glucosidase, by sequencing individual segregant genomes. A major QTL mapped to a frameshift mutation in the mannosyltransferase gene HOC1, which gives CBS7435 a weaker cell wall and higher protein secretion than the other isolates. Inactivation of HOC1 in the other isolates doubled ß-glucosidase secretion. A second QTL mapped to an amino acid substitution in IRA1 that tripled ß-glucosidase secretion in 1-week batch cultures but reduced cell viability, and its effects are specific to this heterologous protein. Our results demonstrate that QTL analysis is a powerful method for dissecting the basis of biotechnological traits in nonconventional yeasts, and a route to improving their industrial performance.


Assuntos
Celulases , Saccharomycetales , Pichia/genética , Pichia/metabolismo , Saccharomycetales/genética , Leveduras , Celulases/metabolismo , Proteínas Recombinantes/metabolismo
2.
Metabolites ; 12(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448535

RESUMO

Komagataella phaffii (formerly known as Pichia pastoris) has become an increasingly important microorganism for recombinant protein production. This yeast species has gained high interest in an industrial setting for the production of a wide range of proteins, including enzymes and biopharmaceuticals. During the last decades, relevant bioprocess progress has been achieved in order to increase recombinant protein productivity and to reduce production costs. More recently, the improvement of cell features and performance has also been considered for this aim, and promising strategies with a direct and substantial impact on protein productivity have been reported. In this review, cell engineering approaches including metabolic engineering and energy supply, transcription factor modulation, and manipulation of routes involved in folding and secretion of recombinant protein are discussed. A lack of studies performed at the higher-scale bioreactor involving optimisation of cultivation parameters is also evidenced, which highlights new research aims to be considered.

3.
Elife ; 92020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338594

RESUMO

The mating-type switching endonuclease HO plays a central role in the natural life cycle of Saccharomyces cerevisiae, but its evolutionary origin is unknown. HO is a recent addition to yeast genomes, present in only a few genera close to Saccharomyces. Here we show that HO is structurally and phylogenetically related to a family of unorthodox homing genetic elements found in Torulaspora and Lachancea yeasts. These WHO elements home into the aldolase gene FBA1, replacing its 3' end each time they integrate. They resemble inteins but they operate by a different mechanism that does not require protein splicing. We show that a WHO protein cleaves Torulaspora delbrueckii FBA1 efficiently and in an allele-specific manner, leading to DNA repair by gene conversion or NHEJ. The DNA rearrangement steps during WHO element homing are very similar to those during mating-type switching, and indicate that HO is a domesticated WHO-like element.


In the same way as a sperm from a male and an egg from a female join together to form an embryo in most animals, yeast cells have two sexes that coordinate how they reproduce. These are called "mating types" and, rather than male or female, an individual yeast cell can either be mating type "a" or "alpha". Every yeast cell contains the genes for both mating types, and each cell's mating type is determined by which of those genes it has active. Only one mating type gene can be 'on' at a time, but some yeast species can swap mating type on demand by switching the corresponding genes 'on' or 'off'. This switch is unusual. Rather than simply activate one of the genes it already has, the yeast cell keeps an inactive version of each mating type gene tucked away, makes a copy of the gene it wants to be active and pastes that copy into a different location in its genome. To do all of this yeast need another gene called HO. This gene codes for an enzyme that cuts the DNA at the location of the active mating type gene. This makes an opening that allows the cell to replace the 'a' gene with the 'alpha' gene, or vice versa. This system allows yeast cells to continue mating even if all the cells in a colony start off as the same mating type. But, cutting into the DNA is risky, and can damage the health of the cell. So, why did yeast cells evolve a system that could cause them harm? To find out where the HO gene came from, Coughlan et al. searched through all the available genomes from yeast species for other genes with similar sequences and identified a cluster which they nicknamed "weird HO" genes, or WHO genes for short. Testing these genes revealed that they also code for enzymes that make cuts in the yeast genome, but the way the cell repairs the cuts is different. The WHO genes are jumping genes. When the enzyme encoded by a WHO gene makes a cut in the genome, the yeast cell copies the gene into the gap, allowing the gene to 'jump' from one part of the genome to another. It is possible that this was the starting point for the evolution of the HO gene. Changes to a WHO gene could have allowed it to cut into the mating type region of the yeast genome, giving the yeast an opportunity to 'domesticate' it. Over time, the yeast cell stopped the WHO gene from jumping into the gap and started using the cut to change its mating type. Understanding how cells adapt genes for different purposes is a key question in evolutionary biology. There are many other examples of domesticated jumping genes in other organisms, including in the human immune system. Understanding the evolution of HO not only sheds light on how yeast mating type switching evolved, but on how other species might harness and adapt their genes.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Genes Fúngicos Tipo Acasalamento , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Evolução Molecular , Rearranjo Gênico , Proteínas Nucleares/genética , Filogenia , Saccharomyces cerevisiae/enzimologia
4.
Biotechnol Prog ; 36(1): e2893, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425642

RESUMO

Whole cell biocatalysis is an ideal tool for biotransformations that demand enzyme regeneration or robustness to fluctuating pH, osmolarity and biocontaminant load in feedstocks. The methylotrophic yeast Komagataella phaffii is an attractive alternative to Escherichia coli for whole cell biocatalysis due to its genetic tractability and capacity to grow to up to 60% wet cell weight by volume. We sought to exploit high cell density K. phaffii to intensify whole-cell chiral amino-alcohol (CAA) biosynthesis. We engineered two novel K. phaffii GS115 strains: one by inserting a Chromobacterium violaceum ω-transaminase CV2025 transgene, for strain PpTAmCV708, and a second strain, PpTAm-TK16, by also inserting the same CV2025 transgene plus a second transgene for a native transketolase. At high cell density, both strains tolerated high substrate concentrations. When fed three low cost substrates, 200 mM glycolaldehyde, 200 mM hydroxypyruvate and 150 mM methylbenzylamine, PpTAm-TK16 whole cells achieved 0.29 g L-1 hr-1 space-time yield of the acetophenone by-product, a 49-fold increase of the highest levels reported for E. coli whole cells harboring the equivalent pathway. When fed only the low-cost substrate, 150 mM methylbenzylamine, strain PpTAmCV708 achieved a 105-fold increase of reported E. coli whole cell biocatalysis performance, with a space-time yield of 0.62 g L-1 hr-1 of the CAA, 2-amino-1,3,4-butanetriol (ABT). The rapid growth and high biomass characteristics of K. phaffii were successfully exploited for production of ABT by whole-cell biocatalysis at higher levels than the previously achieved with E. coli in the presence of the same substrates.


Assuntos
Amino Álcoois/metabolismo , Chromobacterium/enzimologia , Escherichia coli/metabolismo , Engenharia de Proteínas , Saccharomycetales/metabolismo , Transcetolase/metabolismo , Amino Álcoois/química , Biotransformação , Escherichia coli/citologia , Transgenes
5.
Curr Biol ; 29(24): 4284-4290.e2, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31813610

RESUMO

Humans have used yeasts to make cheese and kefir for millennia, but the ability to ferment the milk sugar lactose is found in only a few yeast species, of which the foremost is Kluyveromyces lactis [1]. Two genes, LAC12 (lactose permease) and LAC4 (lactase), are sufficient for lactose uptake and hydrolysis to glucose and galactose [2]. Here, we show that these genes have a complex evolutionary history in the genus Kluyveromyces that is likely the result of human activity during domestication. We show that the ancestral Lac12 was bifunctional, able to import both lactose and cellobiose into the cell. These disaccharides were then hydrolyzed by Lac4 in the case of lactose or Cel2 in the case of cellobiose. A second cellobiose transporter, Cel1, was also present ancestrally. In the K. lactis lineage, the ancestral LAC12 and LAC4 were lost and a separate upheaval in the sister species K. marxianus resulted in loss of CEL1 and quadruplication of LAC12. One of these LAC12 genes became neofunctionalized to encode an efficient lactose transporter capable of supporting fermentation, specifically in dairy strains of K. marxianus, where it formed a LAC4-LAC12-CEL2 gene cluster, although another remained a cellobiose transporter. Then, the ability to ferment lactose was acquired very recently by K. lactis var. lactis by introgression of LAC12 and LAC4 on a 15-kb subtelomeric region from a dairy strain of K. marxianus. The genomic history of the LAC genes shows that strong selective pressures were imposed on yeasts by early dairy farmers.


Assuntos
Kluyveromyces/genética , Kluyveromyces/metabolismo , Lactose/genética , Celobiose/genética , Celobiose/metabolismo , Domesticação , Evolução Molecular , Fermentação/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico/genética , Genótipo , Lactose/metabolismo , Família Multigênica/genética , Fenótipo , Filogenia
6.
Microb Cell Fact ; 18(1): 211, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801527

RESUMO

BACKGROUND: Komagataella phaffii is a yeast widely used in the pharmaceutical and biotechnology industries, and is one of the two species that were previously called Pichia pastoris. However, almost all laboratory work on K. phaffii has utilized strains derived from a single natural isolate, CBS7435. There is little information about the sequence diversity of K. phaffii or the genetic properties of this species. RESULTS: We sequenced the genomes of all the known isolates of K. phaffii. We made a genetic cross between derivatives of two isolates that differ at 44,000 single nucleotide polymorphism sites, and used this cross to analyze the rate and landscape of meiotic recombination. We conducted tetrad analysis by making use of the property that K. phaffii haploids do not mate in rich media, which enabled us to isolate and sequence the four types of haploid cell that are present in the colony that forms when a tetra-type ascus germinates. CONCLUSIONS: We found that only four distinct natural isolates of K. phaffii exist in public yeast culture collections. The meiotic recombination rate in K. phaffii is approximately 3.5 times lower than in Saccharomyces cerevisiae, with an average of 25 crossovers per meiosis. Recombination is suppressed, and genetic diversity among natural isolates is low, in a region around centromeres that is much larger than the centromeres themselves. Our work lays a foundation for future quantitative trait locus analysis in K. phaffii.


Assuntos
Genômica , Meiose/genética , Pichia/genética , Recombinação Genética/genética , Pichia/isolamento & purificação , Saccharomyces cerevisiae/genética
7.
Heliyon ; 5(8): e02338, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31467995

RESUMO

We have engineered strain BG-10 of the methylotrophic yeast Komagataella phaffii for use as an effective whole cell biocatalyst. We introduced into the yeast a transgene encoding a Chromobacterium violaceum ω-transaminase for transcription in response to methanol induction. The strain was then assessed with respect to its growth performance and biotransformation of a fed ketoalcohol substrate to an amino-alcohol. In the resultant strain, BG-TAM, methanol induction did not compromise cell growth. Successful bioconversion of fed substrates to the by-product, acetophenone, indicated transaminase activity in shake flask-cultivated BG-TAM cells. We then used bioreactor cultivation to exploit the high levels of biomass achievable by Komagataella phaffii. In a 900 µL reaction the BG-TAM strain at OD600 = 1024 achieved up to 0.41 mol mol-1 (molproduct molsubstrate -1) yield on substrate (Yp/s) for production of 1-methyl-3-phenylpropylamine and a space time yield (STY) of 0.29 g L-1 h-1 for production of 2-amino-1,3,4-butanetriol. We have shown that transamination, an important step for bespoke synthesis of small molecule medicines, is biologically realisable using enzymes with a broad substrate range, such as ω-transaminases, within living yeast cells that are fed low-cost substrates for bioconversion.

8.
PLoS Pathog ; 14(7): e1007138, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024981

RESUMO

We investigated genomic diversity of a yeast species that is both an opportunistic pathogen and an important industrial yeast. Under the name Candida krusei, it is responsible for about 2% of yeast infections caused by Candida species in humans. Bloodstream infections with C. krusei are problematic because most isolates are fluconazole-resistant. Under the names Pichia kudriavzevii, Issatchenkia orientalis and Candida glycerinogenes, the same yeast, including genetically modified strains, is used for industrial-scale production of glycerol and succinate. It is also used to make some fermented foods. Here, we sequenced the type strains of C. krusei (CBS573T) and P. kudriavzevii (CBS5147T), as well as 30 other clinical and environmental isolates. Our results show conclusively that they are the same species, with collinear genomes 99.6% identical in DNA sequence. Phylogenetic analysis of SNPs does not segregate clinical and environmental isolates into separate clades, suggesting that C. krusei infections are frequently acquired from the environment. Reduced resistance of strains to fluconazole correlates with the presence of one gene instead of two at the ABC11-ABC1 tandem locus. Most isolates are diploid, but one-quarter are triploid. Loss of heterozygosity is common, including at the mating-type locus. Our PacBio/Illumina assembly of the 10.8 Mb CBS573T genome is resolved into 5 complete chromosomes, and was annotated using RNAseq support. Each of the 5 centromeres is a 35 kb gene desert containing a large inverted repeat. This species is a member of the genus Pichia and family Pichiaceae (the methylotrophic yeasts clade), and so is only distantly related to other pathogenic Candida species.


Assuntos
Candida/classificação , Candida/genética , Metagenômica , Pichia/classificação , Pichia/genética , Filogenia
9.
FEMS Yeast Res ; 18(7)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052970

RESUMO

Interspecies hybridization is an important evolutionary mechanism in yeasts. The genus Zygosaccharomyces in particular contains numerous hybrid strains and/or species. Here, we investigated the genome of Zygosaccharomyces strain MT15, an isolate from Maotai-flavor Chinese liquor fermentation. We found that it is an interspecies hybrid and identified it as Zygosaccharomyces pseudobailii. The Z. bailii species complex consists of three species: Z. bailii, which is not a hybrid and whose 10 Mb genome is designated 'A', and two hybrid species Z. parabailii ('AB' genome, 20 Mb) and Z. pseudobailii ('AC' genome, 20 Mb). The A, B and C subgenomes are all approximately 7%-10% different from one another in nucleotide sequence, and are derived from three different parental species. Despite being hybrids, Z. pseudobailii and Z. parabailii are capable of mating and sporulating. We previously showed that Z. parabailii regained fertility when one copy of its MAT locus became broken into two parts, causing the allodiploid hybrid to behave as a haploid gamete. In Z. pseudobailii, we find that a very similar process occurred after hybridization, when a deletion of 1.5 kb inactivated one of the two copies of its MAT locus. The half-sibling species Z. parabailii and Z. pseudobailii therefore went through remarkably parallel but independent steps to regain fertility after they were formed by separate interspecies hybridizations.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Hibridização Genética , Deleção de Sequência , Zygosaccharomyces/genética , Sequência de Bases , Evolução Biológica , Mapeamento Cromossômico , Fertilidade/genética , Genoma Fúngico/genética , Haploidia , Filogenia , Zygosaccharomyces/classificação , Zygosaccharomyces/fisiologia
10.
Biotechnol Prog ; 34(1): 99-106, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29086489

RESUMO

Transketolase is a proven biocatalytic tool for asymmetric carbon-carbon bond formation, both as a purified enzyme and within bacterial whole-cell biocatalysts. The performance of Pichia pastoris as a host for transketolase whole-cell biocatalysis was investigated using a transketolase-overexpressing strain to catalyze formation of l-erythrulose from ß-hydroxypyruvic acid and glycolaldehyde substrates. Pichia pastoris transketolase coding sequence from the locus PAS_chr1-4_0150 was subcloned downstream of the methanol-inducible AOX1 promoter in a plasmid for transformation of strain GS115, generating strain TK150. Whole and disrupted TK150 cells from shake flasks achieved 62% and 65% conversion, respectively, under optimal pH and methanol induction conditions. In a 300 µL reaction, TK150 samples from a 1L fed-batch fermentation achieved a maximum l-erythrulose space time yield (STY) of 46.58 g L-1 h-1 , specific activity of 155 U gCDW-1, product yield on substrate (Yp/s ) of 0.52 mol mol-1 and product yield on catalyst (Yp/x ) of 2.23g gCDW-1. We have successfully exploited the rapid growth and high biomass characteristics of Pichia pastoris in whole cell biocatalysis. At high cell density, the engineered TK150 Pichia pastoris strain tolerated high concentrations of substrate and product to achieve high STY of the chiral sugar l-erythrulose. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:99-106, 2018.


Assuntos
Acetaldeído/análogos & derivados , Biotransformação , Piruvatos/química , Tetroses/química , Acetaldeído/química , Reatores Biológicos , Fermentação , Regulação Fúngica da Expressão Gênica , Metanol/química , Pichia/química , Pichia/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tetroses/biossíntese , Transcetolase/química , Transcetolase/genética
11.
PLoS Biol ; 15(5): e2002128, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28510588

RESUMO

Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT) locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae.


Assuntos
Evolução Biológica , Duplicação Gênica , Genoma Fúngico , Hibridização Genética , Zygosaccharomyces/genética , Fertilidade/genética , Rearranjo Gênico , Inativação Gênica , Genes Fúngicos Tipo Acasalamento/genética , Haploidia , Íntrons , Perda de Heterozigosidade
12.
Biotechnol J ; 10(8): 1289-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098300

RESUMO

Microalgae have potential as platforms for the synthesis of high-value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low-cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co-expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl-1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl-1. This study suggests that recombinant protein expression is product-specific and needs to be optimized individually.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes/metabolismo , Biotecnologia , Chlamydomonas reinhardtii/genética , Cloroplastos , Genes Reporter/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas/genética , Engenharia de Proteínas , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA