Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ann Surg ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348652

RESUMO

OBJECTIVE: This study aimed to assess 30-day morbidity and mortality rates following cholecystectomy for benign gallbladder disease and identify the factors associated with complications. SUMMARY BACKGROUND DATA: Although cholecystectomy is common for benign gallbladder disease, there is a gap in the knowledge of the current practice and variations on a global level. METHODS: A prospective, international, observational collaborative cohort study of consecutive patients undergoing cholecystectomy for benign gallbladder disease from participating hospitals in 57 countries between January 1 and June 30, 2022, was performed. Univariate and multivariate logistic regression models were used to identify preoperative and operative variables associated with 30-day postoperative outcomes. RESULTS: Data of 21,706 surgical patients from 57 countries were included in the analysis. A total of 10,821 (49.9%), 4,263 (19.7%), and 6,622 (30.5%) cholecystectomies were performed in the elective, emergency, and delayed settings, respectively. Thirty-day postoperative complications were observed in 1,738 patients (8.0%), including mortality in 83 patients (0.4%). Bile leaks (Strasberg grade A) were reported in 278 (1.3%) patients and severe bile duct injuries (Strasberg grades B-E) were reported in 48 (0.2%) patients. Patient age, ASA physical status class, surgical setting, operative approach and Nassar operative difficulty grade were identified as the five predictors demonstrating the highest relative importance in predicting postoperative complications. CONCLUSION: This multinational observational collaborative cohort study presents a comprehensive report of the current practices and outcomes of cholecystectomy for benign gallbladder disease. Ongoing global collaborative evaluations and initiatives are needed to promote quality assurance and improvement in cholecystectomy.

2.
Sci Rep ; 13(1): 14660, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669983

RESUMO

Link prediction in complex networks has recently attracted a great deal of attraction in diverse scientific domains, including social and biological sciences. Given a snapshot of a network, the goal is to predict links that are missing in the network or that are likely to occur in the near future. This problem has both theoretical and practical significance; it not only helps us to identify missing links in a network more efficiently by avoiding the expensive and time consuming experimental processes, but also allows us to study the evolution of a network with time. To address the problem of link prediction, numerous attempts have been made over the recent years that exploit the local and the global topological properties of the network to predict missing links in the network. In this paper, we use parametrised matrix forest index (PMFI) to predict missing links in a network. We show that, for small parameter values, this index is linked to a heat diffusion process on a graph and therefore encodes geometric properties of the network. We then develop a framework that combines the PMFI with a local similarity index to predict missing links in the network. The framework is applied to numerous networks obtained from diverse domains such as social network, biological network, and transport network. The results show that the proposed method can predict missing links with higher accuracy when compared to other state-of-the-art link prediction methods.

4.
PLoS One ; 17(2): e0263390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180244

RESUMO

BACKGROUND: Numerous approaches have been proposed for the detection of epistatic interactions within GWAS datasets in order to better understand the drivers of disease and genetics. METHODS: A selection of state-of-the-art approaches were assessed. These included the statistical tests, fast-epistasis, BOOST, logistic regression and wtest; swarm intelligence methods, namely AntEpiSeeker, epiACO and CINOEDV; and data mining approaches, including MDR, GSS, SNPRuler and MPI3SNP. Data were simulated to provide randomly generated models with no individual main effects at different heritabilities (pure epistasis) as well as models based on penetrance tables with some main effects (impure epistasis). Detection of both two and three locus interactions were assessed across a total of 1,560 simulated datasets. The different methods were also applied to a section of the UK biobank cohort for Atrial Fibrillation. RESULTS: For pure, two locus interactions, PLINK's implementation of BOOST recovered the highest number of correct interactions, with 53.9% and significantly better performing than the other methods (p = 4.52e - 36). For impure two locus interactions, MDR exhibited the best performance, recovering 62.2% of the most significant impure epistatic interactions (p = 6.31e - 90 for all but one test). The assessment of three locus interaction prediction revealed that wtest recovered the highest number (17.2%) of pure epistatic interactions(p = 8.49e - 14). wtest also recovered the highest number of three locus impure epistatic interactions (p = 6.76e - 48) while AntEpiSeeker ranked as the most significant the highest number of such interactions (40.5%). Finally, when applied to a real dataset for Atrial Fibrillation, most notably finding an interaction between SYNE2 and DTNB.


Assuntos
Fibrilação Atrial/genética , Epistasia Genética , Loci Gênicos , Modelos Genéticos , Penetrância , Algoritmos , Alelos , Mineração de Dados/métodos , Proteínas Associadas à Distrofina/genética , Frequência do Gene , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Modelos Lineares , Proteínas dos Microfilamentos/genética , Redução Dimensional com Múltiplos Fatores , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Polimorfismo de Nucleotídeo Único , Curva ROC
5.
Genes (Basel) ; 12(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356044

RESUMO

Observational and experimental evidence has linked chronotype to both psychological and cardiometabolic traits. Recent Mendelian randomization (MR) studies have investigated direct links between chronotype and several of these traits, often in isolation of outside potential mediating or moderating traits. We mined the EpiGraphDB MR database for calculated chronotype-trait associations (p-value < 5 × 10-8). We then re-analyzed those relevant to metabolic or mental health and investigated for statistical evidence of horizontal pleiotropy. Analyses passing multiple testing correction were then investigated for confounders, colliders, intermediates, and reverse intermediates using the EpiGraphDB database, creating multiple chronotype-trait interactions among each of the the traits studied. We revealed 10 significant chronotype-exposure associations (false discovery rate < 0.05) exposed to 111 potential previously known confounders, 52 intermediates, 18 reverse intermediates, and 31 colliders. Chronotype-lipid causal associations collided with treatment and diabetes effects; chronotype-bipolar associations were mediated by breast cancer; and chronotype-alcohol intake associations were impacted by confounders and intermediate variables including known zeitgebers and molecular traits. We have reported the influence of chronotype on several cardiometabolic and behavioural traits, and identified potential confounding variables not reported on in studies while discovering new associations to drugs and disease.


Assuntos
Transtorno Bipolar/genética , Ritmo Circadiano/genética , Fenótipo , Consumo de Bebidas Alcoólicas , Álcoois , Bases de Dados Genéticas , Humanos , Análise da Randomização Mendeliana , Fluxo de Trabalho
6.
Sci Rep ; 11(1): 16392, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385524

RESUMO

Multimorbidity, frequently associated with aging, can be operationally defined as the presence of two or more chronic conditions. Predicting the likelihood of a patient with multimorbidity to develop a further particular disease in the future is one of the key challenges in multimorbidity research. In this paper we are using a network-based approach to analyze multimorbidity data and develop methods for predicting diseases that a patient is likely to develop. The multimorbidity data is represented using a temporal bipartite network whose nodes represent patients and diseases and a link between these nodes indicates that the patient has been diagnosed with the disease. Disease prediction then is reduced to a problem of predicting those missing links in the network that are likely to appear in the future. We develop a novel link prediction method for static bipartite network and validate the performance of the method on benchmark datasets. By using a probabilistic framework, we then report on the development of a method for predicting future links in the network, where links are labelled with a time-stamp. We apply the proposed method to three different multimorbidity datasets and report its performance measured by different performance metrics including AUC, Precision, Recall, and F-Score.


Assuntos
Doença Crônica/tendências , Multimorbidade/tendências , Previsões/métodos , Humanos , Probabilidade
7.
Adv Clin Chem ; 102: 191-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34044910

RESUMO

In this chapter we discuss the past, present and future of clinical biomarker development. We explore the advent of new technologies, paving the way in which health, medicine and disease is understood. This review includes the identification of physicochemical assays, current regulations, the development and reproducibility of clinical trials, as well as, the revolution of omics technologies and state-of-the-art integration and analysis approaches.


Assuntos
Medicina de Precisão , Inteligência Artificial , Biomarcadores/análise , Humanos
8.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114263

RESUMO

Inferring the topology of a gene regulatory network (GRN) from gene expression data is a challenging but important undertaking for gaining a better understanding of gene regulation. Key challenges include working with noisy data and dealing with a higher number of genes than samples. Although a number of different methods have been proposed to infer the structure of a GRN, there are large discrepancies among the different inference algorithms they adopt, rendering their meaningful comparison challenging. In this study, we used two methods, namely the MIDER (Mutual Information Distance and Entropy Reduction) and the PLSNET (Partial least square based feature selection) methods, to infer the structure of a GRN directly from data and computationally validated our results. Both methods were applied to different gene expression datasets resulting from inflammatory bowel disease (IBD), pancreatic ductal adenocarcinoma (PDAC), and acute myeloid leukaemia (AML) studies. For each case, gene regulators were successfully identified. For example, for the case of the IBD dataset, the UGT1A family genes were identified as key regulators while upon analysing the PDAC dataset, the SULF1 and THBS2 genes were depicted. We further demonstrate that an ensemble-based approach, that combines the output of the MIDER and PLSNET algorithms, can infer the structure of a GRN from data with higher accuracy. We have also estimated the number of the samples required for potential future validation studies. Here, we presented our proposed analysis framework that caters not only to candidate regulator genes prediction for potential validation experiments but also an estimation of the number of samples required for these experiments.


Assuntos
Carcinoma Ductal Pancreático/genética , Biologia Computacional/métodos , Redes Reguladoras de Genes , Doenças Inflamatórias Intestinais/genética , Leucemia Mieloide Aguda/genética , Neoplasias Pancreáticas/genética , Algoritmos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Marcadores Genéticos , Glucuronosiltransferase/genética , Humanos , Análise dos Mínimos Quadrados , Sulfotransferases/genética , Trombospondinas/genética
9.
Sci Data ; 6(1): 328, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857590

RESUMO

The immune response to major trauma has been analysed mainly within post-hospital admission settings where the inflammatory response is already underway and the early drivers of clinical outcome cannot be readily determined. Thus, there is a need to better understand the immediate immune response to injury and how this might influence important patient outcomes such as multi-organ dysfunction syndrome (MODS). In this study, we have assessed the immune response to trauma in 61 patients at three different post-injury time points (ultra-early (<=1 h), 4-12 h, 48-72 h) and analysed relationships with the development of MODS. We developed a pipeline using Absolute Shrinkage and Selection Operator and Elastic Net feature selection methods that were able to identify 3 physiological features (decrease in neutrophil CD62L and CD63 expression and monocyte CD63 expression and frequency) as possible biomarkers for MODS development. After univariate and multivariate analysis for each feature alongside a stability analysis, the addition of these 3 markers to standard clinical trauma injury severity scores yields a Generalized Liner Model (GLM) with an average Area Under the Curve value of 0.92 ± 0.06. This performance provides an 8% improvement over the Probability of Survival (PS14) outcome measure and a 13% improvement over the New Injury Severity Score (NISS) for identifying patients at risk of MODS.


Assuntos
Biomarcadores , Aprendizado de Máquina , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/imunologia , Antígenos CD , Área Sob a Curva , Conjuntos de Dados como Assunto , Humanos , Modelos Lineares , Monócitos , Neutrófilos , Probabilidade , Índice de Gravidade de Doença , Análise de Sobrevida
10.
J Transl Med ; 17(1): 155, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088492

RESUMO

BACKGROUND: Translational medicine (TM) is an emerging domain that aims to facilitate medical or biological advances efficiently from the scientist to the clinician. Central to the TM vision is to narrow the gap between basic science and applied science in terms of time, cost and early diagnosis of the disease state. Biomarker identification is one of the main challenges within TM. The identification of disease biomarkers from -omics data will not only help the stratification of diverse patient cohorts but will also provide early diagnostic information which could improve patient management and potentially prevent adverse outcomes. However, biomarker identification needs to be robust and reproducible. Hence a robust unbiased computational framework that can help clinicians identify those biomarkers is necessary. METHODS: We developed a pipeline (workflow) that includes two different supervised classification techniques based on regularization methods to identify biomarkers from -omics or other high dimension clinical datasets. The pipeline includes several important steps such as quality control and stability of selected biomarkers. The process takes input files (outcome and independent variables or -omics data) and pre-processes (normalization, missing values) them. After a random division of samples into training and test sets, Least Absolute Shrinkage and Selection Operator and Elastic Net feature selection methods are applied to identify the most important features representing potential biomarker candidates. The penalization parameters are optimised using 10-fold cross validation and the process undergoes 100 iterations and a combinatorial analysis to select the best performing multivariate model. An empirical unbiased assessment of their quality as biomarkers for clinical use is performed through a Receiver Operating Characteristic curve and its Area Under the Curve analysis on both permuted and real data for 1000 different randomized training and test sets. We validated this pipeline against previously published biomarkers. RESULTS: We applied this pipeline to three different datasets with previously published biomarkers: lipidomics data by Acharjee et al. (Metabolomics 13:25, 2017) and transcriptomics data by Rajamani and Bhasin (Genome Med 8:38, 2016) and Mills et al. (Blood 114:1063-1072, 2009). Our results demonstrate that our method was able to identify both previously published biomarkers as well as new variables that add value to the published results. CONCLUSIONS: We developed a robust pipeline to identify clinically relevant biomarkers that can be applied to different -omics datasets. Such identification reveals potentially novel drug targets and can be used as a part of a machine-learning based patient stratification framework in the translational medicine settings.


Assuntos
Algoritmos , Biomarcadores/análise , Genômica , Pesquisa Translacional Biomédica , Área Sob a Curva , Humanos , Lipídeos/análise , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA