Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(49): 33754-66, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25326382

RESUMO

The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, (412)TNST(415) at the end of the C terminus of the receptor, and additional sites involved in desensitization ((372)TS(373)) and internalization (Ser(395)). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns.


Assuntos
Neurônios/metabolismo , Oligopeptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Neuropeptídeos/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurônios/citologia , Oligopeptídeos/química , Mapeamento de Peptídeos , Fosforilação , Transporte Proteico , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Alinhamento de Sequência , Transdução de Sinais
2.
Anal Biochem ; 453: 50-4, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24613258

RESUMO

A new radioiodinated photoaffinity compound, [(125)I]YE(Bpa)WSLAAPQRFNH2, derived from a peptide present in the rat neuropeptide FF (NPFF) precursor was synthesized, and its binding characteristics were investigated on a neuroblastoma clone, SH-SY5Y, stably expressing rat NPFF2 receptors tagged with the T7 epitope. The binding of the probe was saturable and revealed a high-affinity interaction (KD=0.24nM) with a single class of binding sites. It was also able to affinity label NPFF2 receptor in a specific and efficient manner given that 38% of the bound radioligand at saturating concentration formed a wash-resistant binding after ultraviolet (UV) irradiation. Photoaffinity labeling with [(125)I]YE(Bpa)WSLAAPQRFamide showed two molecular forms of NPFF2 receptor with apparent molecular weights of 140 and 95kDa in a 2:1 ratio. The comparison of the results between photoaffinity labeling and Western blot analysis suggests that all receptor forms bind the probe irreversibly with the same efficiency. On membranes of mouse olfactory bulb, only the high molecular weight form of NPFF2 receptor is observed. [(125)I]YE(Bpa)WSLAAPQRFamide is an excellent radioiodinated peptidic ligand for direct and selective labeling of NPFF2 receptors in vitro.


Assuntos
Marcadores de Afinidade/química , Oligopeptídeos/química , Fenilalanina/análogos & derivados , Ensaio Radioligante/métodos , Receptores de Neuropeptídeos/análise , Marcadores de Afinidade/síntese química , Sequência de Aminoácidos , Animais , Humanos , Radioisótopos do Iodo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Neuroblastoma/metabolismo , Bulbo Olfatório/metabolismo , Oligopeptídeos/análise , Fenilalanina/química , Fotólise , Ratos , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Células Tumorais Cultivadas
3.
Peptides ; 36(1): 17-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580381

RESUMO

NPFF precursor, pro-NPFF(A) contains three known bioactive sequences: NPFF (FLFQPQRF-NH(2)), neuropeptide AF (NPAF; AGEGLSSPFWSLAAPQRF-NH(2)) and neuropeptide SF (NPSF; SLAAPQRF-NH(2)). The key-feature of these fragments is their common PQRF-amidated sequence at their C termini. Here, we evaluated the biological activity of two other sequences derived from the mouse NPFF(A) precursor, that does not have PQRF-amidated C-terminus. One peptide was residing between positions 85 and 99 in the mice pro-NPFF(A). This peptide was referred to as neuropeptide SA (NPSA; SAWGSWSKEQLNPQA), assigned due to its flanking amino acids. Another sequence used in the experiments was N-terminal fragment of NPSA, here referred to as neuropeptide SS (NPSS; SAWGSWS). These two peptides, classified as crypteins, were synthesized and tested in the hot-plate and tail immersion tests in mice for their pharmacological activity in morphine-induced antinociception. The effects of both crypteins were compared to NPFF. Our experiments indicated that both crypteins inhibited morphine antinociception and their effects were reversed by RF9, an antagonist of NPFF receptors. These data show that NPSA and NPSS possess NPFF-like anti-opioid activity in these behavioral tests.


Assuntos
Antagonistas de Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Precursores de Proteínas/farmacologia , Sequência de Aminoácidos , Analgésicos Opioides/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Morfina/antagonistas & inibidores , Morfina/farmacologia , Medição da Dor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA