RESUMO
Coronaviruses have historically precipitated global pandemics of severe acute respiratory syndrome (SARS) into devastating public health crises. Despite the virus's rapid rate of mutation, all SARS coronavirus 2 (SARS-CoV-2) variants are known to gain entry into host cells primarily through complexation with angiotensin-converting enzyme 2 (ACE2). Although ACE2 has potential as a druggable decoy to block viral entry, its clinical use is complicated by its essential biological role as a carboxypeptidase and hindered by its structural and chemical instability. Here we designed supramolecular filaments, called fACE2, that can silence ACE2's enzymatic activity and immobilize ACE2 to their surface through enzyme-substrate complexation. This docking strategy enables ACE2 to be effectively delivered in inhalable aerosols and improves its structural stability and functional preservation. fACE2 exhibits enhanced and prolonged inhibition of viral entry compared with ACE2 alone while mitigating lung injury in vivo.
RESUMO
Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster ( Mesocricetus auratus ) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.
RESUMO
To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.
Assuntos
COVID-19/patologia , Animais , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Feminino , Pulmão/patologia , Masculino , Mesocricetus , SARS-CoV-2RESUMO
Clinical pathology testing for investigative or biomedical research and for preclinical toxicity and safety assessment in laboratory animals is a distinct specialty requiring an understanding of species specific and other influential variables on results and interpretation. This review of clinical pathology principles and testing recommendations in laboratory animal species aims to provide a useful resource for researchers, veterinary specialists, toxicologists, and clinical or anatomic pathologists.
Assuntos
Pesquisa Biomédica , Patologia Clínica , Animais , Animais de Laboratório , Cães , Camundongos , Primatas , Coelhos , Ratos , Suínos , Porco MiniaturaRESUMO
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Assuntos
Cabras , Doenças dos Suínos , Animais , Animais de Laboratório , Modelos Animais de Doenças , Cães , Furões , Ovinos , SuínosRESUMO
The Institute for Laboratory Animal Research (ILAR) was created within the National Academies of Sciences, Engineering, and Medicine (National Academies) in 1953 when biomedical research using animals was in its infancy in terms of quantity, quality, complexity, sophistication, and care. Over the intervening 69 years, ILAR has witnessed unprecedented growth, followed by unprecedented decline, and then regrowth in usage of specific species and models and an overall shift in experimental burden away from larger to smaller species (ie, mice, fish, and rats). ILAR has contributed much to the evolution of necessary research using animals and animal models for the benefit of humans, animals, and the environment and to the development and implementation of humane principles and standards for care and use of research animals. ILAR has served as a "neutral broker" seeking consensus, solutions, common ground, and pathways forward for all professional constituencies engaged in conduct of animal research. In 2022, ILAR will become the Board on Animal Health Sciences, Conservation, and Research (BAHSCR) within the Division on Earth and Life Studies of the National Academies and the ILAR Journal will pause publication with volume 62. This manuscript recounts the history and accomplishments of ILAR 1953-2022, emphasizing the past 2 decades. The manuscript draws upon ILAR's communications and previously published histories to document ILAR's leaders, reports, publications, conferences, workshops, and roundtables using text, tables, references, and extensive supplemental tables. The authors' intention is to provide the scientific community with a single source document for ILAR, and they apologize for any omissions and errors.
Assuntos
Experimentação Animal , Pesquisa Biomédica , Animais , Humanos , Camundongos , Ratos , Estados Unidos , Animais de Laboratório , Modelos AnimaisRESUMO
Laboratory registration codes, also known as laboratory codes or lab codes, are a key element in standardized laboratory animal and genetic nomenclature. As such they are critical to accurate scientific communication and to research reproducibility and integrity. The original committee on Mouse Genetic Nomenclature published nomenclature conventions for mice genetics in 1940, and then conventions for inbred strains in 1952. Unique designations were needed, and have been in use since the 1950s, for the sources of animals and substrains, for the laboratories that identified new alleles or mutations, and then for developers of transgenes and induced mutations. Current laboratory codes are typically a 2- to 4-letter acronym for an institution or an investigator. Unique codes are assigned from the International Laboratory Code Registry, which was developed and is maintained by ILAR in the National Academies (National Academies of Sciences Engineering and Medicine and previously National Academy of Sciences). As a resource for the global research community, the registry has been online since 1997. Since 2003 mouse and rat genetic and strain nomenclature rules have been reviewed and updated annually as a joint effort of the International Committee on Standardized Genetic Nomenclature for Mice and the Rat Genome and Nomenclature Committee. The current nomenclature conventions (particularly conventions for non-inbred animals) are applicable beyond rodents, although not widely adopted. Ongoing recognition, since at least the 1930s, of the research relevance of genetic backgrounds and origins of animals, and of spontaneous and induced genetic variants speaks to the need for broader application of standardized nomenclature for animals in research, particularly given the increasing numbers and complexities of genetically modified swine, nonhuman primates, fish, and other species.
Assuntos
Animais de Laboratório , Laboratórios , Camundongos , Animais , Ratos , Suínos , Reprodutibilidade dos Testes , Animais de Laboratório/genéticaRESUMO
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Assuntos
Fenômenos Biológicos , Doenças Transmissíveis , Animais , Cricetinae , Gerbillinae , Cobaias , Camundongos , Ratos-Toupeira , CoelhosRESUMO
An amendment to this paper has been published and can be accessed via the original article.
RESUMO
PURPOSE: To evaluate the safety, feasibility, and preliminary efficacy of yttrium-90 (90Y) radioembolization (RE) as a minimally invasive treatment in a canine model with presumed spontaneous brain cancers. MATERIALS: Three healthy research dogs (R1-R3) and five patient dogs with spontaneous intra-axial brain masses (P1-P5) underwent cerebral artery RE with 90Y glass microspheres (TheraSphere). 90Y-RE was performed on research dogs from the unilateral internal carotid artery (ICA), middle cerebral artery (MCA), and posterior cerebral artery (PCA) while animals with brain masses were treated from the ICA. Post-treatment 90Y PET/CT was performed along with serial neurological exams by a veterinary neurologist. One month after treatment, research dogs were euthanized and the brains were extracted and sent for microdosimetric and histopathologic analyses. Patient dogs received post-treatment MRI at 1-, 3-, and 6-month intervals with long-term veterinary follow-up. RESULTS: The average absorbed dose to treated tissue in R1-R3 was 14.0, 30.9, and 73.2 Gy, respectively, with maximum doses exceeding 1000 Gy. One month after treatment, research dog pathologic analysis revealed no evidence of cortical atrophy and rare foci consistent with chronic infarcts, e.g., < 2-mm diameter. Absorbed doses to masses in P1-P5 were 45.5, 57.6, 58.1, 45.4, and 64.1 Gy while the dose to uninvolved brain tissue was 15.4, 27.6, 19.2, 16.7, and 33.3 G, respectively. Among both research and patient animals, 6 developed acute neurologic deficits following treatment. However, in all surviving dogs, the deficits were transient resolving between 7 and 33 days post-therapy. At 1 month post-therapy, patient animals showed a 24-94% reduction in mass volume with partial response in P1, P3, and P4 at 6 months post-treatment. While P2 initially showed a response, by 5 months, the mass had advanced beyond pre-treatment size, and the dog was euthanized. CONCLUSION: This proof of concept demonstrates the technical feasibility and safety of 90Y-RE in dogs, while preliminary, initial data on the efficacy of 90Y-RE as a potential treatment for brain cancer is encouraging.
RESUMO
Auger radiopharmaceutical therapy is a promising strategy for micrometastatic disease given high linear energy transfer and short range in tissues, potentially limiting normal tissue toxicities. We previously demonstrated anti-tumor efficacy of a small-molecule Auger electron emitter targeting the prostate-specific membrane antigen (PSMA), 2-[3-[1-carboxy-5-(4-[125I]iodo-benzoylamino)-pentyl]-ureido]-pentanedioic acid), or 125I-DCIBzL, in a mouse xenograft model. Here, we investigated the therapeutic efficacy, long-term toxicity, and biodistribution of 125I-DCIBzL in a micrometastatic model of prostate cancer (PC). Methods: To test the therapeutic efficacy of 125I-DCIBzL in micrometastatic PC, we used a murine model of human metastatic PC in which PSMA+ PC3-ML cells expressing firefly luciferase were injected intravenously in NSG mice to form micrometastatic deposits. One week later, 0, 0.37, 1.85, 3.7, 18.5, 37, or 111 MBq of 125I-DCIBzL was administered (intravenously). Metastatic tumor burden was assessed using bioluminescence imaging (BLI). Long-term toxicity was evaluated via serial weights and urinalysis of non-tumor-bearing mice over a 12-month period, as well as final necropsy. Results: In the micrometastatic PC model, activities of 18.5 MBq 125I-DCIBzL and above significantly delayed development of detectable metastatic disease by BLI and prolonged survival in mice. Gross metastases were detectable in control mice and those treated with 0.37-3.7 MBq 125I-DCIBzL at a median of 2 weeks post-treatment, versus 4 weeks for those treated with 18.5-111 MBq 125I-DCIBzL (P<0.0001 by log-rank test). Similarly, treatment with ≥18.5 MBq 125I-DCIBzL yielded a median survival of 11 weeks, compared with 6 weeks for control mice (P<0.0001). At 12 months, there was no appreciable toxicity via weight, urinalysis, or necropsy evaluation in mice treated with any activity of 125I-DCIBzL, which represents markedly less toxicity than the analogous PSMA-targeted α-particle emitter. Macro-to-microscale dosimetry modeling demonstrated lower absorbed dose in renal cell nuclei versus tumor cell nuclei due to lower levels of drug uptake and cellular internalization in combination with the short range of Auger emissions. Conclusion: PSMA-targeted radiopharmaceutical therapy with the Auger emitter 125I-DCIBzL significantly delayed development of detectable metastatic disease and improved survival in a micrometastatic model of PC, with no long-term toxicities noted at 12 months, suggesting a favorable therapeutic ratio for treatment of micrometastatic PC.
Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Radioisótopos do Iodo/administração & dosagem , Glicoproteínas de Membrana/antagonistas & inibidores , Metástase Neoplásica , Neoplasias da Próstata , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/radioterapia , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mice deficient in the IL-10 pathway are the most widely used models of intestinal immunopathology. IL-17A is strongly implicated in gut disease in mice and humans, but conflicting evidence has drawn IL-17's role in the gut into question. IL-22 regulates antimicrobial and repair activities of intestinal epithelial cells (IECs) and is closely associated with IL-17A responses but it's role in chronic disease is uncertain. We report that IL-22, like IL-17A, is aberrantly expressed in colitic Il10-/- mice. While IL-22+ Th17 cells were elevated in the colon, IL-22-producing ILC3s were highly enriched in the small intestines of Il10-/- mice. Remarkably, Il10-/-Il22-/- mice did not develop colitis despite retaining high levels of Th17 cells and remaining colonized with colitogenic Helicobacter spp. Accordant with IL-22-induced IEC proliferation, the epithelia hyperplasia observed in Il10-/- animals was reversed in Il10-/-Il22-/- mice. Also, the high levels of antimicrobial IL-22-target genes, including Reg3g, were normalized in Il10-/-Il22-/- mice. Consistent with a heightened antimicrobial environment, Il10-/- mice had reduced diversity of the fecal microbiome that was reestablished in Il10-/-Il22-/- animals. These data suggest that spontaneous colitis in Il10-/- mice is driven by IL-22 and implicates an underappreciated IL-10/IL-22 axis in regulating intestinal homeostasis.
Assuntos
Colite/etiologia , Colite/metabolismo , Suscetibilidade a Doenças , Interleucina-10/deficiência , Interleucinas/genética , Interleucinas/metabolismo , Animais , Biópsia , Colite/patologia , Modelos Animais de Doenças , Expressão Gênica , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunofenotipagem , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Modelos Biológicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Interleucina 22RESUMO
The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.
Assuntos
Nefrite Intersticial/virologia , Parvovirus/isolamento & purificação , Parvovirus/patogenicidade , Animais , Austrália , Progressão da Doença , Feminino , Fibrose/patologia , Fibrose/virologia , Humanos , Rim/metabolismo , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Intersticial/fisiopatologia , América do Norte , Infecções por Parvoviridae/metabolismoRESUMO
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Assuntos
Pesquisa Translacional Biomédica/métodos , Animais , Modelos Animais de Doenças , Variação Genética , Sistema Imunitário/imunologia , CamundongosRESUMO
This issue of ILAR Journal focusses on pathology and pathologists in biomedical research, more specifically in preclinical translational research involving (nonhuman) animals, emphasizing academic settings. Considerations in study design and planning to maximize benefit from pathologists and pathology resources are reviewed. Adjunctive technologies including molecular techniques, digital pathology, and imaging are highlighted. Additional considerations regarding safety and regulatory concerns, and veterinary clinical trials are reviewed as well. Pathology has been fundamental to understanding clinical disease, remains fundamental to diagnosing disease, and is required in drug and device development. Broader integration of pathology expertise and well-designed pathology investigations have much to offer research rigor and reproducibility, and successful translation from biomedical research.
Assuntos
Pesquisa Biomédica/métodos , Patologia/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Reprodutibilidade dos TestesRESUMO
PURPOSE: To evaluate safety and characterize anticancer efficacy of hepatic hypoxia-activated intra-arterial therapy (HAIAT) with evofosfamide in a rabbit model. EXPERIMENTAL DESIGN: VX2-tumor-bearing rabbits were assigned to 4 intra-arterial therapy (IAT) groups (n = 7/group): (i) saline (control); (ii) evofosfamide (Evo); (iii) doxorubicin-lipiodol emulsion followed by embolization with 100-300 µm beads (conventional, cTACE); or (iv) cTACE and evofosfamide (cTACE + Evo). Blood samples were collected pre-IAT and 1, 2, 7, and 14 days post-IAT. A semiquantitative scoring system assessed hepatocellular damage. Tumor volumes were segmented on multidetector CT (baseline, 7/14 days post-IAT). Pathologic tumor necrosis was quantified using manual segmentation on whole-slide images. Hypoxic fraction (HF) and compartment (HC) were determined by pimonidazole staining. Tumor DNA damage, apoptosis, cell proliferation, endogenous hypoxia, and metabolism were quantified (γ-H2AX, Annexin V, caspase-3, Ki-67, HIF1α, VEGF, GAPDH, MCT4, and LDH). RESULTS: cTACE + Evo showed a similar profile of liver enzymes elevation and pathologic scores compared with cTACE. Neither hematologic nor renal toxicity were observed. Animals treated with cTACE + Evo demonstrated smaller tumor volumes, lower tumor growth rates, and higher necrotic fractions compared with cTACE. cTACE + Evo resulted in a marked reduction in the HF and HC. Correlation was observed between decreases in HF or HC and tumor necrosis. cTACE + Evo promoted antitumor effects as evidenced by increased expression of γ-H2AX, apoptotic biomarkers, and decreased cell proliferation. Increased HIF1α/VEGF expression and tumor glycolysis supported HAIAT. CONCLUSIONS: HAIAT achieved a promising step towards the locoregional targeting of tumor hypoxia. The favorable toxicity profile and enhanced anticancer effects of evofosfamide in combination with cTACE pave the way towards clinical trials in patients with liver cancer. Clin Cancer Res; 23(2); 536-48. ©2016 AACR.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Hepáticas/terapia , Nitroimidazóis/administração & dosagem , Mostardas de Fosforamida/administração & dosagem , Hipóxia Tumoral , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Tumoral Circulante/genética , Terapia Combinada , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Óleo Etiodado/administração & dosagem , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , CoelhosAssuntos
Alergia e Imunologia , Modelos Animais , Pesquisa Translacional Biomédica , Animais , HumanosRESUMO
Animal models are essential research tools in modern biomedical research, but there are concerns about their lack of reproducibility and the failure of animal data to translate into advances in human medical therapy. A major factor in improving experimental reproducibility is thorough communication of research methodologies. The recently published ARRIVE guidelines outline basic information that should be provided when reporting animal studies. This paper builds on ARRIVE by providing the minimum information needed in reports to allow proper assessment of pathology data gathered from animal tissues. This guidance covers aspects of experimental design, technical procedures, data gathering, analysis, and presentation that are potential sources of variation when creating morphological, immunohistochemical (IHC) or in situ hybridization (ISH) datasets. This reporting framework will maximize the likelihood that pathology data derived from animal experiments can be reproduced by ensuring that sufficient information is available to allow for replication of the methods and facilitate inter-study comparison by identifying potential interpretative confounders.
Assuntos
Modelos Animais , Patologia/métodos , Guias de Prática Clínica como Assunto , Experimentação Animal , Animais , Humanos , Disseminação de Informação , Publicações , Projetos de Pesquisa , Pesquisa Translacional BiomédicaRESUMO
Pinworms are highly contagious parasites of laboratory rodents that often are treated with fenbendazole. To our knowledge, the effect of fenbendazole at therapeutic dosages on behavioral tests in mice has not been evaluated. Here we studied 6-wk-old male C57BL/6N mice. We compared the behavior of control mice (fed regular diet) with 3 groups of mice treated with dietary fenbendazole. Treatment groups were 4 wk of fenbendazole, 2 wk of fenbendazole followed by 2 wk of regular diet, and 2 wk of regular diet followed by 2 wk of fenbendazole. At the end of dietary treatment all groups were tested by open field for central, peripheral and vertical activity; elevated plus maze for anxiety; and rotarod for motor ability and then evaluated by clinical pathology and selected histopathology. Treated and control groups showed no differences in open field or elevated plus maze testing, histopathology, or clinical pathology. However mice treated for 4 wk with fenbendazole or 2 wk of fenbendazole followed by 2 wk regular diet stayed on the rotarod for shorter periods than did controls, and mice treated with 2 wk of regular diet followed by 2 wk fenbendazole showed a trend toward shorter rotarod times. In light of this study, we suggest that open field and elevated plus maze testing is unlikely to be affected by 4 wk fenbendazole treatment in male C57BL/6 mice; however, behavioral tests of motor ability such as rotarod tests may be affected during and for at least 2 wk after fenbendazole treatment.
Assuntos
Antinematódeos/farmacologia , Fenbendazol/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Animais , Antinematódeos/administração & dosagem , Fenbendazol/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de TempoRESUMO
There is much speculation whether extravascular inflammation accelerates atherosclerosis. We tested this hypothesis in apoE(-/-) mice using three well-characterized models of non-autoimmune chronic inflammation: croton oil-induced skin inflammation, Aspergillus fumigatus antigen-induced allergic lung disease, and A. fumigatus antigen-induced peritonitis. The croton oil model produced recurrent inflammatory skin ulceration, and marked increases in plasma levels of IL-6 and serum amyloid A (SAA). The allergic lung disease model showed strong local inflammation with eosinophilic infiltration and serum IgE induction. The recurrent peritonitis model was accompanied by mild elevation in plasma SAA levels. Aortic atherosclerosis was quantified by computer-assisted morphometry of en face arteries in apoE(-/-) mice at 34 weeks for the croton oil model, 26 and 42 weeks for the allergic lung disease model, and 26 weeks for the peritonitis model. We found that all three forms of chronic extravascular inflammation had no effect on the rate of atherosclerosis development.